欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2028-2040.doi: 10.3724/SP.J.1006.2022.12068

• 耕作栽培·生理生化 • 上一篇    下一篇

穗肥施氮量对不同穗型超级稻品种产量的影响及其机制

刘昆(), 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军*(), 杨建昌   

  1. 扬州大学江苏省作物遗传生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心 / 江苏省作物基因组学和分子育种重点实验室, 江苏扬州 225009
  • 收稿日期:2021-09-20 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-16
  • 通讯作者: 刘立军
  • 作者简介:E-mail: 940057576@qq.com
  • 基金资助:
    国家自然科学基金项目(32071947);国家自然科学基金项目(31871557);江苏省农业科技自主创新项目(cx(18)3007);江苏省作物遗传生理重点实验室开放课题(YSCL201807);国家重点研发计划项目(2016YFD0300502);国家重点研发计划项目(2017YFD0301206);江苏高校优势学科建设工程项目(PAPD);江苏省研究生科研与实践创新计划项目(KYCX21_3235)

Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism

LIU Kun(), HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun*(), YANG Jian-Chang   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Co-innovation Centre for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-09-20 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-16
  • Contact: LIU Li-Jun
  • Supported by:
    National Natural Science Foundation of China(32071947);National Natural Science Foundation of China(31871557);Jiangsu Agriculture Science and Technology Innovation Fund(cx(18)3007);Open Project of Jiangsu Key Laboratory of Crop Genetics and Physiology(YSCL201807);National Key Research and Development Program of China(2016YFD0300502);National Key Research and Development Program of China(2017YFD0301206);Priority Academic Program Deve¬lopment of Jiangsu Higher Education Institutions(PAPD);Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX21_3235)

摘要:

施用氮素穗肥是水稻增产的一项重要管理措施, 但其用量对不同穗型超级稻品种的增产效应及其机制尚不明确。本研究选用3个穗型(以每穗粒数表示)差异较大的超级稻品种南粳9108 (小穗型)、扬两优6号(中穗型)和甬优1540 (大穗型)为材料, 在基蘖肥用量相同(162 kg N hm-2)的情况下, 研究了0、54、108、162和216 kg km-2五种穗肥施氮量对上述水稻品种产量的影响, 并观察了其对颖花分化退化及抽穗后相关形态生理指标的调控效应。结果表明: (1) 在0~216 kg hm-2穗肥施氮量范围内, 随施氮量增加, 水稻每穗粒数均逐渐增加, 结实率和粒重逐渐降低, 且穗肥施氮量越高结实率和千粒重下降越明显。南粳9108、扬两优6号和甬优1540三个水稻品种在穗肥施氮量分别为162~216、108~162和54~108 kg hm-2时产量最高。依据产量与穗肥施氮量曲线方程计算出上述3个品种高产最适穗肥施氮量分别为177.6~182.0、134.3~136.3和109.9~125.7 kg hm-2。(2) 总体而言, 穗型大的品种产量高, 穗型小的品种穗肥增产效应大。施用穗肥后小穗型品种二次颖花分化数和现存数增加幅度大是其增产效应高于中、大穗型品种的主要原因。(3) 3个水稻品种在高产的穗肥施氮量条件下, 高效叶面积率、粒叶比(颖花/叶、实粒/叶和粒重/叶)、非结构性碳水化合物(non-structural carbohydrate, NSC)转运量、糖花比、抽穗后0~40 d根系氧化力、颖花根活量和籽粒与根系玉米素(zeatin, Z)和玉米素核苷(zeatin riboside, ZR)含量高。相关分析表明, 不同穗型超级稻品种产量与以上指标基本呈显著或极显著正相关关系。上述结果表明, 穗肥施氮量应根据穗型大小进行调节。适宜的穗肥施氮量有助于在较高总颖花量的前提下, 保持抽穗后较高的高效叶面积率、粒叶比、NSC转运量、糖花比、根系氧化力、颖花根活量和籽粒与根系中Z + ZR含量, 这有利于维持较高的结实率和粒重, 从而提高水稻产量。

关键词: 水稻, 穗肥施氮量, 穗型, 高产, 形态生理

Abstract:

The application of panicle nitrogen fertilizer is an important management measure to increase rice yield, but its effect and mechanism of application rates on the yield increase of super rice varieties with different panicle sizes are still unclear. In this study, three super rice varieties with large differences in panicle sizes (indicated by the spikelet number per panicle) of Nanjing 9108 (small panicle size), Yangliangyou 6 (medium panicle size), and Yongyou 1540 (large panicle size) were selected as materials. Under the condition of the same amount of base-tiller fertilizer (162 kg N hm-2), the effects of five panicle nitrogen fertilizer rates (PNR) of 0, 54, 108, 162, and 216 kg hm-2 on the yield of the above rice varieties were studied. And its regulatory effects on the differentiation and degeneration of spikelets and related morphophysiological indices after heading were observed. The results were as follows: (1) In the PNR range of 0-216 kg hm-2, the spikelet number per panicle gradually increased but the seed-setting rate and 1000-grain weight gradually decreased with the increase of PNR. And the higher the PNR, the more obvious the decrease of seed-setting rate and 1000-grain weight. Three rice varieties, Nanjing 9108, Yangliangyou 6, and Yongyou 1540, had the highest yields in the PNR of 162-216, 108-162, and 54-108 kg hm-2, respectively. According to the curve equation of grain yield and PNR, the optimal PNR for high yields of the above three varieties were calculated to be 177.6-182.0, 134.3-136.3, and 109.9-125.7 kg hm-2, respectively. (2) In general, rice varieties with large panicle sizes had higher yields, while rice varieties with small panicle sizes had greater yield-increasing effects of PNR. The number of differentiated and surviving secondary spikelets in rice varieties with small panicle size increased greatly after application of panicle nitrogen fertilizer, which was the main reason that the yield-increasing effect was higher than that of rice varieties with medium and large panicle size. (3) Under the condition of high-yield PNR, high effective leaf area ratio, grain-leaf ratio (spikelet/leaf area, filled grain/leaf area, and grain weight/leaf area), non-structural carbohydrate (NSC) translocation amount, sugar-spikelet ratio, root oxidation activity, activity root of spikelet and zeatin (Z) + zeatin riboside (ZR) content in grains and roots from 0-40 day(s) after heading of three rice varieties were high. Correlation analysis showed that the yields of super rice varieties with different panicle sizes and the above indicators basically had a significant or extremely significant positive correlation. These results indicated that the PNR should be adjusted according to the panicle size. The appropriate PNR was beneficial to maintain a high effective leaf area ratio, grain-leaf ratio, NSC translocation amount, sugar-spikelet ratio, root oxidation activity, activity root of spikelet, and Z + ZR content in grains and roots after heading under the premise of higher total spikelets. This helped to maintain a high seed-setting rate and grain weight, thereby ultimately increasing the grain yield.

Key words: rice, panicle nitrogen fertilizer rate, panicle size, high yields, morphology and physiology

表1

穗肥施氮量对不同穗型超级稻品种产量和主要形态生理指标的方差分析"

变异来源
Source of variation
自由度
Degree of freedom
产量
Grain yield
每穗粒数
Spikelets
per panicle
糖花比
Sugar-spikelet
ratio
颖花根活量
Activity root of spikelet
年份 Year (Y) 1 ns ns ns ns
穗肥施氮量 Panicle nitrogen fertilizer rate (P) 4 66.8** 12.3** 10.9** 260.5**
品种 Variety (V) 2 405.9** 233.2** 16.6** 18.4**
年份×穗肥施氮量 Y × P 4 ns ns ns ns
年份×品种 Y × V 2 ns ns ns ns
穗肥施氮量×品种 P × V 8 4.3** ns ns ns
年份×穗肥施氮量×品种 Y × P × V 8 ns ns ns ns

表2

穗肥施氮量对不同穗型超级稻品种产量及其构成因素的影响"

年份
Year
品种
Variety
穗肥施氮量
Panicle nitrogen fertilizer rate
(kg hm-2)
单位面积穗数
Panicle number
(×104 hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total spikelets (×106 hm-2)
结实率
Seed-setting
rate (%)
千粒重
1000-grain weight (g)
产量
Grain yield
(t hm-2)
2018 南粳9108 0 268.8 a 116.5 d 313.2 d 91.5 a 25.9 a 7.42 d
Nanjing 9108 54 271.4 a 132.7 c 360.1 c 90.2 ab 25.6 a 8.32 c
108 273.3 a 144.8 b 395.7 b 88.8 ab 25.3 ab 8.89 b
162 274.7 a 155.5 a 427.2 a 86.4 b 25.2 ab 9.30 a
216 276.2 a 162.1 a 447.7 a 82.7 c 24.7 b 9.15 ab
平均Mean 272.9 142.3 388.8 87.9 25.3 8.61
扬两优6号 0 205.5 a 184.6 d 379.4 d 84.8 a 29.1 a 9.36 c
Yangliangyou 6 54 206.7 a 205.5 c 424.8 c 82.9 ab 28.8 a 10.14 b
108 207.8 a 223.4 b 464.2 b 81.2 ab 28.5 ab 10.74 a
162 208.7 a 234.7 ab 489.8 a 78.1 b 28.3 ab 10.83 a
216 208.9 a 244.1 a 509.9 a 71.6 c 27.9 b 10.19 b
平均Mean 207.5 218.5 453.6 79.7 28.5 10.25
甬优1540 0 192.3 a 261.3 d 502.5 d 83.2 a 24.1 a 10.08 c
Yongyou 1540 54 193.6 a 279.8 c 541.7 c 82.5 a 24.0 a 10.73 ab
108 194.2 a 303.9 b 590.2 b 80.3 ab 23.8 ab 11.28 a
162 195.5 a 314.3 ab 614.5 ab 76.9 b 23.6 ab 11.15 a
216 196.8 a 321.9 a 633.5 a 71.7 c 23.3 b 10.58 bc
平均Mean 194.5 296.2 576.5 78.9 23.8 10.76
2019 南粳9108 0 265.9 a 117.4 d 312.2 d 92.3 a 26.0 a 7.49 d
Nanjing 9108 54 270.7 a 132.9 c 359.8 c 90.6 ab 25.7 a 8.38 c
108 272.1 a 144.6 b 393.5 b 89.1 ab 25.4 ab 8.90 b
162 273.6 a 156.8 a 429.0 a 86.7 b 25.2 ab 9.37 a
216 274.2 a 163.4 a 448.0 a 82.2 c 24.8 b 9.13 ab
平均Mean 271.3 143.0 388.5 88.2 25.4 8.66
扬两优6号 0 204.2 a 183.2 d 374.1 d 85.4 a 29.2 a 9.33 c
Yangliangyou 6 54 207.8 a 203.8 c 423.5 c 83.2 ab 28.9 a 10.18 b
108 208.4 a 219.4 b 457.2 b 81.4 ab 28.6 ab 10.64 a
162 210.5 a 231.9 ab 488.1 a 78.7 b 28.3 ab 10.87 a
216 212.7 a 240.5 a 511.5 a 71.8 c 27.8 b 10.21 b
平均Mean 208.7 215.8 450.9 80.1 28.6 10.25
甬优1540 0 191.5 a 263.6 d 504.8 d 83.8 a 24.2 a 10.24 c
Yongyou 1540 54 193.1 a 287.4 c 555.0 c 82.6 a 24.1 a 11.05 ab
108 193.7 a 305.7 b 592.1 b 80.6 b 23.7 ab 11.31 a
162 194.1 a 312.5 ab 606.6 ab 75.1 b 23.6 ab 10.75 b
216 196.3 a 319.1 a 626.4 a 71.3 c 23.4 b 10.45 bc
平均Mean 193.7 297.7 577.0 78.7 23.8 10.76

表3

不同穗型超级稻品种获得最高产量时的穗肥施氮量"

年份
Year
品种
Variety
穗肥施氮量(x, kg N hm-2)与产量(y, kg hm-2)关系方程
Equation between panicle nitrogen fertilizer rate
(x, kg N hm-2) and grain yield (y, kg hm-2)
R2 xopt
(x, kg N hm-2)
ymax
(kg hm-2)
2018 南粳9108 Nanjing 9108 y = -0.0555x2+20.2x+7404.7 0.996 182.0 9242.7
扬两优6号 Yangliangyou 6 y = -0.0823x2+22.1x+9304.8 0.978 134.3 10788.4
甬优1540 Yongyou 1540 y = -0.0764x2+19.2x+10029.0 0.977 125.7 11235.3
2019 南粳9108 Nanjing 9108 y = -0.0566x2+20.1x+7469.9 0.989 177.6 9254.4
扬两优6号 Yangliangyou 6 y = -0.0800x2+21.8x+9290.7 0.976 136.3 10775.8
甬优1540 Yongyou 1540 y = -0.0746x2+16.4x+10298.0 0.879 109.9 11199.3

表4

穗肥施氮量对不同穗型超级稻品种一、二次颖花分化和退化的影响"

品种
Variety
穗肥施氮量
Panicle nitrogen
fertilizer rate
(kg hm-2)
每穗一次颖花 Primary spikelets per panicle 每穗二次颖花Secondary spikelets per panicle
分化数
Differentiated
number
退化数
Degenerated
number
现存数
Surviving
number
退化率
Degeneration
rate (%)
分化数
Differentiated
number
退化数
Degenerated
number
现存数
Surviving
number
退化率
Degeneration
rate (%)
南粳9108 0 68.9 c 0.76 d 68.1 c 1.10 c 74.6 e 14.3 e 60.4 d 19.2 b
Nanjing 9108 54 71.4 bc 0.88 c 70.5 bc 1.23 b 91.3 d 15.8 d 75.5 c 17.3 c
108 74.9 b 0.98 b 73.9 b 1.31 a 105.4 c 19.3 c 86.1 b 18.3 bc
162 76.7 ab 1.04 a 75.7 ab 1.36 a 116.1 b 22.7 b 93.4 a 19.6 b
216 79.4 a 1.09 a 78.3 a 1.37 a 122.6 a 27.4 a 95.2 a 22.3 a
扬两优6号 0 68.6 c 0.98 e 67.6 c 1.43 e 168.5 d 34.8 d 133.7 c 20.7 d
Yangliangyou 6 54 72.8 b 1.34 d 71.5 b 1.84 d 184.3 c 36.6 d 147.7 b 19.9 d
108 75.3 b 1.58 c 73.7 ab 2.10 c 231.6 b 54.7 c 176.9 a 23.6 c
162 77.6 ab 1.83 b 75.8 a 2.36 b 250.8 a 64.2 b 186.6 a 25.6 b
216 79.5 a 2.13 a 77.4 a 2.68 a 259.5 a 71.2 a 188.3 a 27.4 a
甬优1540 0 87.8 d 0.40 e 87.4 c 0.46 e 239.5 d 52.8 d 186.6 d 22.0 c
Yongyou 1540 54 93.3 c 0.95 d 92.4 b 1.02 d 254.3 c 54.4 d 199.8 c 21.4 c
108 99.6 b 1.85 c 97.8 a 1.86 c 282.7 b 62.2 c 220.5 b 22.0 c
162 103.8 ab 3.25 b 100.6 a 3.13 b 307.8 a 77.7 b 230.1 ab 25.2 b
216 106.2 a 3.82 a 102.4 a 3.60 a 322.0 a 88.1 a 233.9 a 27.4 a

表5

穗肥施氮量对不同穗型超级稻品种抽穗期叶面积指数(LAI)和粒叶比的影响"

品种
Variety
穗肥施氮量
Panicle nitrogen
fertilizer rate
(kg hm-2)
叶面积指数 LAI 粒叶比 Grain-leaf ratio
总LAI
Total LAI
高效LAI
Effective LAI
高效叶面积率
High effective
leaf area rate (%)
颖花/叶
Spikelet/leaf area (cm-2)
实粒/叶
Filled grain/leaf area (cm-2)
粒重/叶
Grain weight/leaf area (mg cm-2)
南粳9108 0 6.33 d 3.83 d 60.5 c 0.49 d 0.45 c 12.8 c
Nanjing 9108 54 6.62 c 4.24 c 63.9 b 0.54 c 0.49 b 13.9 b
108 6.87 bc 4.56 b 66.3 ab 0.58 b 0.51 ab 14.6 a
162 7.02 b 4.84 a 68.9 a 0.61 a 0.53 a 15.3 a
216 7.53 a 5.02 a 66.7 ab 0.59 ab 0.49 b 14.7 a
扬两优6号 0 6.64 d 4.15 d 62.5 b 0.57 c 0.48 b 16.6 c
Yangliangyou 6 54 6.87 cd 4.45 c 64.7 ab 0.62 b 0.51 a 17.8 b
108 7.14 bc 4.77 b 66.8 a 0.65 ab 0.53 a 18.5 ab
162 7.43 b 4.97 ab 66.9 a 0.66 a 0.51 a 18.7 a
216 7.87 a 5.08 a 64.5 ab 0.65 ab 0.46 b 18.1 ab
甬优1540 0 6.98 c 4.45 c 63.8 c 0.72 c 0.60 b 17.3 c
Yongyou 1540 54 7.16 bc 4.77 b 66.5 bc 0.76 b 0.62 ab 18.1 bc
108 7.32 b 5.15 a 70.4 a 0.81 a 0.65 a 19.2 a
162 7.78 a 5.29 a 68.0 ab 0.79 ab 0.61 b 18.6 ab
216 8.12 a 5.33 a 65.7 bc 0.78 ab 0.56 c 18.2 b

图1

穗肥施氮量对不同穗型超级稻品种NSC转运量、NSC转运率和糖花比的影响 0N、54N、108N、162N和216N分别代表穗肥施氮量为0、54、108、162和216 kg hm-2。标以不同字母表示在0.05水平上差异显著, 同一品种内比较。"

图2

穗肥施氮量对不同穗型超级稻品种根系氧化力的影响 0N、54N、108N、162N和216N分别代表穗肥施氮量为0、54、108、162和216 kg hm-2。标以不同字母表示在0.05水平上差异显著, 同一生育期内比较。"

图3

穗肥施氮量对不同穗型超级稻品种根干重和颖花根活量的影响 0N、54N、108N、162N和216N分别代表穗肥施氮量为0、54、108、162和216 kg hm-2。标以不同字母表示在0.05水平上差异显著, 同一生育期内比较。"

图4

穗肥施氮量对不同穗型超级稻品种籽粒与根系Z + ZR含量的影响 0N、54N、108N、162N和216N分别代表穗肥施氮量为0、54、108、162和216 kg hm-2。标以不同字母表示在0.05水平上差异显著, 同一生育期内比较。"

图5

不同穗型超级稻品种主要形态生理指标与产量的相关 TLAI、ELAI、ELAR、SLA、FLA、GLA、NSCT、NSCR、和SSR分别代表抽穗期总LAI、高效LAI、高效叶面积率、颖花/叶、实粒/叶、粒重/叶、NSC转运量、NSC转运率和糖花比。PZ.ZR0、PZ.ZR10、PZ.ZR20、PZ.ZR30和PZ.ZR40分别代表抽穗后0、10、20、30和40 d籽粒Z + ZR含量。ROA0、ROA10、ROA20、ROA30和ROA40分别代表抽穗后0、10、20、30和40 d根系氧化力。RDW0、RDW10、RDW20、RDW30、RDW40分别代表抽穗后0、10、20、30和40 d根干重。AROS0、AROS10、AROS20、AROS30和AROS40分别代表抽穗后0、10、20、30和40 d颖花根活量。RZ.ZR0、RZ.ZR10、RZ.ZR20、RZ.ZR30和RZ.ZR40分别代表抽穗后0、10、20、30和40 d根系Z + ZR含量。"

[1] Huang M, Tang Q, Ao H, Zou Y. Yield potential and stability in super hybrid rice and its production strategies. J Integr Agric, 2017, 16: 1009-1017.
doi: 10.1016/S2095-3119(16)61535-6
[2] Long J R, Ma G H, Wan Y Z, Song C F, Sun J, Qin R J. Effects of nitrogen fertilizer level on chlorophyll fluorescence characteristics in flag leaf of super hybrid rice at late growth stage. Rice Sci, 2013, 20: 220-228
doi: 10.1016/S1672-6308(13)60138-9
[3] 吴俊, 邓启云, 袁定阳, 齐绍武. 超级杂交稻研究进展. 科学通报, 2016, 61: 3787-3796.
Wu j, Deng Q Y, Yuan D Y, Qi S W. Progress of super hybrid rice research in China. Chin Sci Bull, 2016, 61: 3787-3796. (in Chinese with English abstract)
doi: 10.1360/N972016-01013
[4] Ke S, Liu X J, Luan X, Yang W, Zhu H, Liu G, Zhang G, Wang S. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.). Gene, 2018, 675: 285-300.
doi: 10.1016/j.gene.2018.06.105
[5] Jang S, Lee Y, Lee G, Seo J, Lee D, Yu Y, Chin J H, Koh H J. Association between sequence variants in panicle development genes and the number of spikelets per panicle in rice. BMC Genet, 2018, 19: 5.
doi: 10.1186/s12863-017-0591-6 pmid: 29334899
[6] Liu K, Chen Y, Huang J, Qiu Y, Li S, Zhuo X, Yu F, Gao J, Li G, Zhang W, Zhang H, Gu J, Liu L, Yang J. Spikelet differentiation and degeneration in rice varieties with different panicle sizes. Food Energy Secur, 2021, 11: e320.
[7] 顾俊荣, 韩立宇, 董明辉, 陈培峰, 乔中英. 不同穗型粳稻干物质运转与颖花形成及籽粒灌浆结实的差异研究. 扬州大学学报(农业与生命科学版), 2017, 38(4): 68-73.
Gu J R, Han L Y, Dong M H, Chen P F, Qiao Z Y. Studies on the difference of dry matter accumulation and transportation, spikelets formation and the grain filling of japonica rice varieties with different panicle types. J Yangzhou Univ (Agric Life Sci Edn), 2017, 38(4): 68-73 (in Chinese with English abstract).
[8] Han Y, Yang H, Jiao Y. Regulation of inflorescence architecture by cytokinins. Front Plant Sci, 2014, 5: 669.
[9] Xue Y, Duan H, Liu L, Wang Z, Yang J, Zhang J. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Sci, 2013, 53: 271-284.
doi: 10.2135/cropsci2012.06.0360
[10] Zhou W, Lyu T, Chen Y, Hu J, Zhang Q, Ren W. Late nitrogen application enhances spikelet number in indica hybrid rice (Oryza sativa L.). Sci Agric, 2017, 74: 127-133.
doi: 10.1590/1678-992x-2016-0094
[11] Gu J, Li Z, Mao Y, Struik P C, Zhang H, Liu L, Wang Z, Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331
doi: 10.1016/j.plantsci.2018.06.010
[12] Wang Z, Zhang W, Beebout S S, Zhang H, Liu L, Yang J, Zhang J. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016, 193: 54-69.
doi: 10.1016/j.fcr.2016.03.006
[13] Ju C, Zhu Y, Liu T, Sun C. The effect of nitrogen reduction at different stages on grain yield and nitrogen use efficiency for nitrogen efficient rice varieties. Agronomy, 2021, 11: 462.
doi: 10.3390/agronomy11030462
[14] 白志刚, 张均华, 黄洁, 朱练峰, 曹小闯, 朱春权, 钟楚, 金千瑜. 氮肥运筹对水稻氮代谢及稻田土壤氮素迁移转化的影响. 生态学杂志, 2018, 37: 3440-3448.
Bai Z G, Zhang J H, Huang J, Zhu L F, Cao X C, Zhu C Q, Zhong C, Jin Q Y. Effects of nitrogen regime on nitrogen metabolism of rice and nitrogen transformation and translocation in paddy soils. Chin J Ecol, 2018, 37: 3440-3448. (in Chinese with English abstract)
[15] Peng S, Buresh R J, Huang J, Zhong X, Zou Y, Yang J, Wang G, Liu Y, Hu R, Tang Q, Cui K, Zhang F, Dobermann A. Improving nitrogen fertilization in rice by site-specific N management: a review. Agron Sustain Dev, 2010, 30: 649-656.
doi: 10.1051/agro/2010002
[16] Zhou C, Huang Y, Jia B, Wang S, Dou F, Samonte S O P, Chen K, Wang Y. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in Northeast China. Agronomy, 2019, 9: 555.
doi: 10.3390/agronomy9090555
[17] Zhang W J, Li G H, Yang Y M, Li Q, Zhang J, Liu J Y, Wang S H, Tang S, Ding Y F. Effect of nitrogen application rate and ratio on lodging resistance of super rice with different genotypes. J Integr Agric, 2013, 13: 63-72.
doi: 10.1016/S2095-3119(13)60388-3
[18] Xu L, Yuan S, Wang X, Yu X, Peng S. High yields of hybrid rice do not require more nitrogen fertilizer than inbred rice: a meta-analysis. Food Energy Secur, 2021, 10: e276.
[19] Wang Z, Gu D, Beebout S S, Zhang H, Liu L, Yang J, Zhang J. Effect of irrigation regime on grain yield, water productivity, and methane emissions in dry direct-seeded rice grown in raised beds with wheat straw incorporation. Crop J, 2018, 6: 495-508.
doi: 10.1016/j.cj.2018.05.004
[20] Wei H, Zhang H, Blumwald E, Li H, Cheng J, Dai Q, Huo Z, Xu K, Guo B. Different characteristics of high yield formation between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res, 2016, 198: 179-187.
doi: 10.1016/j.fcr.2016.09.009
[21] Chen Y, Li S, Zhang Y, Li T, Ge H, Xia S, Gu J, Zhang H, Lü B, Wu X, Wang Z, Yang J, Zhang J, Liu L. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biol Biochem, 2019, 129: 191-200.
doi: 10.1016/j.soilbio.2018.11.015
[22] Zhang W, Zhu K, Wang Z, Zhang H, Gu J, Liu L, Yang J, Zhang J. Brassinosteroids function in spikelet differentiation and degeneration in rice. J Integr Plant Biol, 2019, 61: 943-963.
doi: 10.1111/jipb.12722
[23] Xiong Q, Tang G, Zhong L, He H, Chen X. Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Front Plant Sci, 2018, 9: 1075.
doi: 10.3389/fpls.2018.01075
[24] Zhang W, Fu L, Men C, Yu J, Yao J, Sheng J, Xu Y, Wang Z, Liu L, Yang J, Zhang J. Response of brassinosteroids to nitrogen rates and their regulation on rice spikelet degeneration during meiosis. Food Energy Secur, 2020, 9: e201.
[25] Li G H, Pan J F, Cui K H, Yuan M, Hu Q Q, Wang W, Mohapatra P K, Nie L, Huang J, Peng S. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Front Plant Sci, 2017, 8: 1369.
doi: 10.3389/fpls.2017.01369
[26] Liu K, Li T, Chen Y, Huang J, Qiu Y, Li S, Wang H, Zhu A, Zhuo X, Yu F, Zhang H, Gu J, Liu L, Yang J. Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Res, 2020, 258: 107946
doi: 10.1016/j.fcr.2020.107946
[27] Meng T, Wei H, Li X, Dai Q, Huo Z. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Res, 2018, 228: 135-146.
doi: 10.1016/j.fcr.2018.08.024
[28] Zhang Z, Chu G, Liu L, Wang Z, Wang X, Zhang H, Yang J, Zhang J. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013, 150: 9-18.
doi: 10.1016/j.fcr.2013.06.002
[29] Bianco M D, Giustini L, Sabatini S. Spatiotemporal changes in the role of cytokinin during root development. New Phytol, 2013, 199, 324-338.
doi: 10.1111/nph.12338 pmid: 23692218
[30] Zheng C, Zhu Y, Wang C, Guo T. Wheat grain yield increase in response to pre-anthesis foliar application of 6-benzylaminopurine is dependent on floret development. PLoS One, 2016, 11: e0156627.
doi: 10.1371/journal.pone.0156627
[31] Krouk G. Hormones and nitrate: a two-way connection. Plant Mol Biol, 2016, 91: 599-606.
doi: 10.1007/s11103-016-0463-x
[32] Chu G, Chen S, Xu C, Wang D, Zhang X. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Res, 2019, 243: 107625.
doi: 10.1016/j.fcr.2019.107625
[33] Duque L O, Villordon A. Root branching and nutrient efficiency: status and way forward in root and tuber crops. Front Plant Sci, 2019, 10: 237.
doi: 10.3389/fpls.2019.00237 pmid: 30886622
[34] Ning P, Li S, Li X, Li C. New maize hybrids had larger and deeper post-silking root than old ones. Field Crops Res, 2014, 166: 66-71.
doi: 10.1016/j.fcr.2014.06.009
[35] Santiago-Arenas R, Hadi S N, Fanshuri B A, Ullah H, Datta A. Effect of nitrogen fertilizer and cultivation method on root systems of rice subjected to alternate wetting and drying irrigation. Ann Appl Biol, 2019, 175: 388-399.
doi: 10.1111/aab.12540
[36] Xu G W, Lu D K, Wang H Z, Li Y. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manage, 2018, 203, 385-394.
doi: 10.1016/j.agwat.2018.02.033
[37] Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011, 123: 170-182.
doi: 10.1016/j.fcr.2011.05.015
[38] Zhen F, Zhou J, Mahmood A, Wang W, Chang X, Liu B, Liu L, Cao W, Zhu Y, Tang L. Quantifying the effects of short-term heat stress at booting stage on nonstructural carbohydrates remobilization in rice. Crop J, 2020, 8: 194-212.
doi: 10.1016/j.cj.2019.07.002
[39] Zhang J, Tong T, Potcho P M, Huang S, Ma L, Tang X. Nitrogen effects on yield, quality and physiological characteristics of giant rice. Agronomy, 2020, 10: 1816.
doi: 10.3390/agronomy10111816
[40] Meng T, Wei H, Li C, Dai Q, Xu K, Huo Z, Wei H, Guo B, Zhang H. Morphological and physiological traits of large-panicle rice varieties with high filled-grain percentage. J Integr Agric, 2016, 15: 1751-1762.
doi: 10.1016/S2095-3119(15)61215-1
[41] Huang L, Yang D, Li X, Peng S, Wang F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res, 2019, 233: 49-58.
doi: 10.1016/j.fcr.2019.01.005
[42] Xu D, Zhu Y, Chen Z, Han C, Hu L, Qiu S, Wu P, Liu G, Wei H, Zhang H. Yield characteristics of japonica/indica hybrids rice in the middle and lower reaches of the Yangtze River in China. J Integr Agric, 2020, 19: 2394-2406.
doi: 10.1016/S2095-3119(19)62872-8
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[4] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[5] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[6] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[7] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[8] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[9] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[10] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[11] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[12] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[13] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[14] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[15] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[10] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .