欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 739-746.doi: 10.3724/SP.J.1006.2022.12011

• 耕作栽培·生理生化 • 上一篇    下一篇

增强叶片氮素输出对水稻分蘖和碳代谢的影响

王琰1(), 陈志雄2, 姜大刚3, 张灿奎4, 查满荣1,*()   

  1. 1吉首大学生物资源与环境科学学院, 湖南吉首 416000
    2华南农业大学农学院, 广东广州 510642
    3华南农业大学生命科学学院, 广东广州 510642
    4普渡大学农学院, 美国印第安纳州 47907
  • 收稿日期:2021-02-10 接受日期:2021-06-16 出版日期:2021-07-19 网络出版日期:2021-07-19
  • 通讯作者: 查满荣
  • 作者简介:E-mail: wy90408@163.com
  • 基金资助:
    国家自然科学基金项目(32060432);湖南省教育厅项目(18C0578);广东省农作物种质资源保存与利用重点实验室开放课题项目(2020B121201008)

Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice

WANG Yan1(), CHEN Zhi-Xiong2, JIANG Da-Gang3, ZHANG Can-Kui4, ZHA Man-Rong1,*()   

  1. 1College of Biology and Environmental Sciences, Jishou University, Jishou 416000, Hunan, China
    2College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
    3College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
    4Department of Agronomy, Purdue University, Indiana 47907, IN, USA
  • Received:2021-02-10 Accepted:2021-06-16 Published:2021-07-19 Published online:2021-07-19
  • Contact: ZHA Man-Rong
  • Supported by:
    National Natural Science Foundation of China(32060432);Research Foundation of Education Bureau of Hunan Province(18C0578);Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization(2020B121201008)

摘要:

增施氮肥是保证水稻高产的重要栽培措施, 但高氮肥投入所增加的植株氮素积累大部分滞留在营养器官中, 对产量的促进作用有限。叶片是氮素储存的主要器官及籽粒氮素的主要供给源。为了明确植株中氮素分配对水稻生长的影响, 本研究将拟南芥铵转运蛋白基因AtAMT1.2在水稻韧皮部特异表达, 促进叶片氮素输出, 检测转基因水稻植株在不同氮肥浓度下的生长情况。试验结果显示, 高氮下pOsSUT1:: AtAMT1.2转基因水稻分蘖数、氮素利用效率显著增加, 叶片中糖输出量增加, 分蘖芽中独角金内酯途径相关基因OsTB1OsD14表达水平下调。研究说明增加叶片氮素输出能够增大叶片中糖向分蘖芽的转运量, 促进分蘖生长, 从而提高了有效分蘖数并带来了更高的氮素利用效率。

关键词: 氮素, 水稻, 分蘖, 氮素利用效率

Abstract:

Nitrogen fertilizer application is one of the main cultivation measures to raise the yield, and high nitrogen level has limited contribution to grain yield due to limited nitrogen translocation in rice. To clarify the effects of nitrogen allocation on rice growth, we constructed pOsSUT1::AtAMT1.2 transgenic rice, the ammonium transporter gene AtAMT1.2 specific expression in phloem to promote leaf nitrogen output. The growth and yield of transgenic plants were measured under HN (high nitrogen) and LN (low nitrogen) conditions. Compared to WT plants, more tillers and higher grain yield were detected in transgenic plants in response to HN condition. The sugar output in leaves was increased, and the relative expression levels of the strigolactone pathway related genes OsTB1 and OsD14 in tiller buds were down-regulated. Our results indicated that the increase of leaf nitrogen export by overexpressing AtAMT1.2 gene could promote sugar translocation from leaves to tillering buds, which improved the growth of tiller, increased the effective tiller number and nitrogen use efficiency.

Key words: nitrogen, rice (Oryza sativa L.), tiller, nitrogen use efficiency

表1

荧光定量PCR引物序列"

基因名称
Gene name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
OsSUT1 TCATCCCTCAGGTGGTCATCG CTTGGAGATCTTGGGCAGCAG
OsSUT2 GTCATACCACAGGTTATTGTGTC GAATTGCAAAGAATGGCCG
OsSUT4 CGTTGTTCCGCAGATAGTAGTG GTGTTCTGCTCAGCCAAATCC
OsSSI GGGCCTTCATGGATCAACC CCGCTTCAAGCATCCTCATC
OsGBSSI AACGTGGCTGCTCCTTGAA TTGGCAATAAGCCACACACA
OsGBSSIl AGGCATCGAGGGTGAGGAG CCATCTGGCCCACATCTCTA
OsFd-GOGAT TGGTTGAGGGCACTGGAGATCA AATATAGGCAAGGCCACCCGTC
OsNADH-GOGAT CCTGTCGAAGGATGATGAAGGTGA TGCATGGCCCTACTATCTTCGC
OsGS1.1 CAAGTCTTTTGGGCGTGATAT CTCAAGAATGTAGCGAG
OsGDH1 CATCTGATCATCTCCCTGTT TTCAGGCAATTCATCACTAC
OsGDH2 GGCCATTAACAACACTCATA ACGCCGATCTATCTTGAAT
OsGDH3 CCAAAAGTACATGAAGAACG GTGATTCCTCAACAGATTCTC
OsTB1 GCCGGATGCAAGAAATC TCAGCAGTAGTGCCGCGAA
OsD14 CGCCTTCGTCGGCCACTC TCGAACCCGCCGTGGTAGTC
OsMADS57 ATGGGGAGGGGGAAGATAG AATTTAGGCTTCTAGAAAGTTCG
AtAMT1.2 ATGGCGACGTGCTTGGACAG CGAGCACGTTGGTGAGCATG
Actin CAATCGTGAGAAGATGACCC GTCCATCAGGAAGCTCGTAGC

图1

pOsSUT1::AtAMT1.2转基因水稻株系筛选 A: AtAMT1.2在叶片中表达量; B: 分蘖数。*和**分别表示在0.05和0.01水平上显著(n = 3)。"

图2

pOsSUT1::AtAMT1.2转基因水稻植株在不同氮素条件下的生长情况 拔节期水稻表型(A), 标尺为15 cm; 高氮下分蘖数(B)、干重(C); 低氮下分蘖数(D)、干重(E)。*和**分别表示在0.05和0.01水平上显著(n = 15); HN: 高氮; LN: 低氮。"

表2

施氮量对pOsSUT1::AtAMT1.2转基因水稻产量及其构成因素的影响"

种植时间/处理
Planting time/treatment
品种
Cultivar
有效穗数/株
Effective panicle per plant
颖花数/穗
Spikelets per panicle
颖花数/株
Spikelets per plant
产量/株
Grain yield (g plant-1)
2020/5 高氮HN WT 7.0±1.9 72.3 ±11.9 490.5±95.3 9.8±1.8
SA11 10.0±2.1** 74.5±11.2 721.3±140.1** 16.6±2.5**
SA33 9.6±2.2* 75.8±12.2 744.3±152.8** 17.0±2.5**
低氮LN WT 5.3±1.5 52.5±7.1 246.6±60.8 5.4±1.0
SA11 5.3±1.6 52.4±6.4 257.4±44.1 5.5±1.1
SA33 5.5±1.5 53.3±8.8 255.2±47.5 5.5±1.0
2020/9 高氮HN WT 9.6±1.0 83.7±17.2 833.1±114.0 19.6±2.3
SA11 15.2±1.4** 82.5±10.1 1146.7±214.4** 27.9±3.9**
SA33 14.1±1.5* 86.7±17.4 1087.6±146.3* 27.5±4.0**
低氮LN WT 6.5±1.0 61.7±8.0 403.8±77.8 9.7±1.7
SA11 6.9±0.9 63.1±8.9 442.6±75.1 10.0±1.4
SA33 6.7±1.1 62.1±7.9 420.4±73.6 9.8±0.9

表3

施氮量处理对pOsSUT1::AtAMT1.2转基因水稻各器官氮浓度的影响"

种植时间/处理
Planting date/treatment
品种
Cultivar

Leaf (%)

Steam (%)

Panicle (%)
2020/5 高氮HN WT 1.07±0.09 0.96±0.06 1.03±0.08
SA11 0.98±0.05* 1.01±0.10 1.15±0.07**
SA33 0.97±0.07* 1.02±0.07* 1.13±0.08**
低氮LN WT 0.86±0.05 0.83±0.06 0.79±0.06
SA11 0.85±0.04 0.86±0.04 0.81±0.05
SA33 0.87±0.06 0.85±0.04 0.82±0.06
2020/9 高氮HN WT 1.00±0.09 0.94±0.06 1.12±0.12
SA11 0.93±0.04* 1.01±0.10 1.28±0.11**
SA33 0.91±0.08* 1.04±0.11* 1.27±0.09**
低氮LN WT 0.84±0.08 0.83±0.06 0.81±0.06
SA11 0.85±0.07 0.84±0.05 0.84±0.11
SA33 0.83±0.09 0.86±0.06 0.83±0.06

图3

pOsSUT1::AtAMT1.2转基因水稻植株在不同氮肥条件下的氮肥农学利用率 转基因水稻植株为2020年9月种植批次。*和**分别表示在0.05 和0.01 水平上显著(n = 3); HN: 高氮; LN: 低氮。"

图4

pOsSUT1::AtAMT1.2转基因水稻植株分蘖数及生物量积累动态 转基因水稻植株为2020年9月种植批次。(A)分蘖数; (B)鲜重; (C)分蘖芽中独角金内酯途径相关基因表达量。*和**分别表示在0.05 和0.01 水平上显著(n = 3); DAS: 播种后天数。"

图5

高氮下pOsSUT1::AtAMT1.2转基因水稻叶片中氮代谢相关基因表达量 转基因水稻植株为2020年9月种植批次。*和**分别表示在0.05和0.01 水平上显著(n = 3)。"

图6

高氮下pOsSUT1::AtAMT1.2转基因水稻叶片中碳氮代谢变化 转基因水稻植株为2020年9月种植批次。(A)光合效率; (B)淀粉含量; (C)可溶性糖含量; (D)糖转运相关基因表达量。*和**分别表示在0.05和0.01水平上显著(n = 3); Pn: 净光合速率。"

[1] Li S, He P, Jin J. Nitrogen use efficiency in grain production and the estimated nitrogen input/output balance in China agriculture. J Sci Food Agric, 2013, 93:1191-1197.
doi: 10.1002/jsfa.5874
[2] Xu M, Li D, Li J, Qin D, Hosen Y, Shen H, Rihuan C, He X. Polyolefin-coated urea decreases ammonia volatilization in a double rice system of southern china. Agron J, 2013, 105:277-284.
doi: 10.2134/agronj2012.0222
[3] 孙志广, 王宝祥, 杨波, 徐波, 邢运高, 刘艳, Kazeem B B. 施氮量对不同水稻品种氮肥利用率和农艺性状的影响. 江西农业学报, 2019, 31:23-28.
Sun Z G, Wang B X, Yang B, Xu B, Xing Y G, Liu Y, Kazeem B B. Effects of nitrogen application levels on nitrogen use efficiency and agronomic traits of rice cultivars. Acta Agric Jiangxi, 2019, 31:23-28 (in Chinese with English abstract).
[4] 李俊周, 邵鹏, 彭廷, 张静, 孙红正, 赵全志. 施氮量对杂交水稻Y两优886产量、稻米品质及氮肥吸收利用的影响. 杂交水稻, 2017, 32(6):50-54.
Li J Z, Shao P, Peng T, Zhang J, Sun H Z, Zhao Q Z. Effects of nitrogen rate on grain yield, quality and nitrogen uptake and utilization of hybrid rice Y-liangyou 886. Hybrid Rice, 2017, 32(6):50-54 (in Chinese with English abstract).
[5] 段里成, 吕伟生, 方加海, 曾勇军, 石庆华, 潘晓华, 蔡海生, 吴自明. 施氮量和每穴苗数对双季杂交早稻产量及氮肥利用率的影响. 生态学杂志, 2018, 37:2959-2967.
Duan L C, Lyu W S, Fang J H, Zeng Y J, Shi Q H, Pan X H, Cai H S, Wu Z M. Effects of nitrogen application rate and seedlings per hole on yield and nitrogen use efficiency of double-season early hybrid rice. Chin J Ecol, 2018, 37:2959-2967 (in Chinese with English abstract).
[6] 邹应斌, 敖和军, 夏冰, 唐启源, 彭少兵, Buresh R J. 不同氮肥施用对杂交稻产量及其氮素利用效率的影响. 作物研究, 2008, 22:214-219.
Zou Y B, Ao H J, Xia B, Tang Q Y, Peng S B, Buresh R J. Effects of different nitrogen application on the yield and nitrogen use efficiency in hybrid rice. Crop Res, 2008, 22:214-219 (in Chinese with English abstract).
[7] 张亚丽, 黄启为, 徐阳春, 沈其荣. 不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较. 植物营养与肥料学报, 2006, 12:616-621.
Zhang Y L, Huang Q W, Xu Y C, Shen Q R. Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars. Plant Nutr Fert Sci, 2006, 12:616-621 (in Chinese with English abstract).
[8] 阳显斌, 张锡洲, 李廷轩, 余海英, 吴德勇. 不同产量水平小麦的氮吸收利用差异. 核农学报, 2010, 24:1073-1079.
Yang X B, Zhang X Z, Li Y X, Yu H Y, Wu D Y. Difference of nitrogen uptake and utilization in wheat cultivars with different grain yield level. J Nucl Agric Sci, 2010, 24:1073-1079 (in Chinese with English abstract).
[9] Shiratsuchi H, Yamagishi T, Ishii R. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice. Field Crops Res, 2006, 95:291-304.
doi: 10.1016/j.fcr.2005.04.005
[10] Mae T, Makino A, Ohira K. Oryza sativa L.) Oryza sativa L.). Plant Cell Physiol, 1983, 24:1079-1086.
[11] Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J J. amt1 by glutamine in rice amt1 by glutamine in rice. Plant Cell Physiol, 2003, 44:1396-1402.
doi: 10.1093/pcp/pcg169
[12] Shelden M C, Dong B, Guy L, Trevaskis B, Whelan J, Ryan P R, Howitt S M, Udvardi M K. Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant Soil, 2001, 231:151-160.
doi: 10.1023/A:1010303813181
[13] Scofield G N, Hirose T, Aoki N, Furbank R T. Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J Exp Bot, 2007, 58:3155-3169.
pmid: 17728297
[14] Kosuke M, Hiromu K, Naoko Y, Mikihisa U, Le L, Kaoru K, Atsushi H, Kotomi U, Tadao A, Shinjiro Y, Junko K. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol, 2010, 51:1127-1135.
doi: 10.1093/pcp/pcq083
[15] Guo S Y, Xu Y Y, Liu H H, Mao Z W, Zhang C, Ma Y, Zhang Q R, Meng Z, Chong K. OsMADS57 and OsTB1 modulates rice tillering via DWARF14 OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun, 2013, 4:1566.
doi: 10.1038/ncomms2542
[16] Selvaraj M J, Valencia M O, Ogawa S, Lu Y Z, Wu L Y, Downs C, Skinner W, Lu Z J, Kridl J C, Ishitani M, Boxtel J V. Development and field performance of nitrogen use efficient rice lines for Africa. Plant Biotechnol J, 2017, 15:775-787.
doi: 10.1111/pbi.12675 pmid: 27889933
[17] Li H, Hu B, Chu C C. Arabidopsis and rice Arabidopsis and rice. J Exp Bot, 2017, 68:2477-2488.
doi: 10.1093/jxb/erx101
[18] Agrell D, Oscarson P, Larsson C M. Translocation of N to and from barley roots its dependence on localnitrate supply in splitroot cultures. Physiol Plant, 1994, 90:467-474.
doi: 10.1111/ppl.1994.90.issue-3
[19] Ohashi M, Ishiyama K, Kusano M, Fukushima A, Kojima S, Hayakawa T, Yamaya T. fructose-1,6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1;2 fructose-1,6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1;2. Rice, 2018, 11:65.
doi: 10.1186/s12284-018-0261-y pmid: 30578468
[20] Decourteix M, Alves G, Bonhomme M, Peuch M, Baaziz K B, Brunel N, Guilliot A, Rageau R. Améglio T, Pétel G, Sakr S. Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiol, 2008, 28:215-224.
pmid: 18055432
[21] Maurel K, Leite G B, Bonhomme M, Guilliot A, Rageau R, Petel G, Sakr S. Prunus persica) trees: a possible role of hexoses Prunus persica) trees: a possible role of hexoses. Tree Physiol, 2004, 24:579-588.
doi: 10.1093/treephys/24.5.579
[22] Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 2010, 13:273-278.
doi: 10.1016/j.pbi.2009.12.002
[23] Granot D, Schwartz R D, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci, 2013, 4:44.
doi: 10.3389/fpls.2013.00044 pmid: 23487525
[24] Salam B B, Barbier F, Danieli R, Paula T B, Ziv C, SpIchal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F, Mira W C, Amit G O, Jiang J M, Ori N, Beveridge C, Eshel D. Sucrose promotes stem branching through cytokinin. Plant Physiol, 2021, 185:1-14.
[25] Barbier F, Peron T, Lecerf M, Garcia P, Barriere Q, Rolcik J, Mercey S B, Citerne S, Lemoine R, Porcheron B, Roman H, Leduc N, Gourrierec J L, Bertheloot J, Sakr S. Rosa hybrid Rosa hybrid. J Exp Bot, 2015, 66:2569-2582.
doi: 10.1093/jxb/erv047
[26] Wang F, Han T W, Song Q X, Ye W X, Song X G, Chu J F, Li J Y, Chen Z J. Rice circadian clock regulates tiller growth and panicle through strigolactone signaling and sugar sensing. Plant Cell, 2020, 10:10.
[27] 董桂春, 于小凤, 赵江宁, 居静, 田昊, 李进前, 张燕, 王余龙. 不同穗型常规籼稻品种氮素吸收利用的基本特点. 作物学报, 2009, 35:2091-2100.
Dong G C, Yu X F, Zhao J N, Ju J, Tian H, Li J Q, Zhang Y, Wang Y L. General characteristics of nitrogen uptake and utilization in conventional indica rice cultivars with different panicle weight types. Acta Agron Sin, 2009, 35:2091-2100 (in Chinese with English abstract).
[28] 张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45:267-273.
Zhang Y L, Fan J B, Duan Y H, Wang D S, Ye L T, Shen Q R. Variation of nitrogen use efficiency of rice different in genotype and its evaluation. Acta Pedol Sin, 2008, 45:267-273 (in Chinese with English abstract).
[29] 魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008, 34:119-125.
doi: 10.3724/SP.J.1006.2008.00119
Wei H Y, Zhang H C, Hang J, Dai Q G, Huo Z Y, Xu K, Zhang S F, Ma Q, Zhang Q, Zhang J. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agron Sin, 2008, 34:119-125 (in Chinese with English abstract).
[30] Zhang Y L, Fan J B, Wang D S. Genotypic differences in grain yield and physiological nitrogen use efficiency among rice cultivars. Pedosphere, 2009, 19:681-691.
doi: 10.1016/S1002-0160(09)60163-6
[31] 王彦荣, 华泽田, 陈温福, 代贵金, 郝宪彬, 王岩, 张忠旭, 隋国民. 粳稻根系与叶片早衰的关系及其对籽粒灌浆的影响. 作物学报, 2003, 29:892-898.
Wang Y R, Hua Z T, Chen W F, Dai G J, Hao X B, Wang Y, Zhang Z X, Sui G M. Relation between root and leaf senescence and their effects on grain-filling in japonica rice. Acta Agron Sin, 2003, 29:892-898 (in Chinese with English abstract).
[32] Yu J, Xuan W, Tian Y L, Fan L, Sun J, Tang W J, Chen G M, Wang B X, Liu Y, Wu W, Liu X L, JiangX Z, Zhou C, Dai Z Y, Xu D Y, Wang C M, Wan J M. OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol J, 2021, 19:167-176.
doi: 10.1111/pbi.v19.1
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!