欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 716-725.doi: 10.3724/SP.J.1006.2022.11012

• 耕作栽培·生理生化 • 上一篇    下一篇

宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响

刘运景1(), 郑飞娜1, 张秀1, 初金鹏1, 于海涛2, 代兴龙1,*(), 贺明荣1,*()   

  1. 1山东农业大学农学院/作物生物学国家重点实验室/农业农村部作物生理生态与耕作重点实验室, 山东泰安 271018
    2潍坊市农业科学研究院, 山东潍坊 261061
  • 收稿日期:2021-01-29 接受日期:2021-06-16 出版日期:2022-03-12 网络出版日期:2021-07-16
  • 通讯作者: 代兴龙,贺明荣
  • 作者简介:E-mail: 1101307472@qq.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0300403);国家自然科学基金青年基金项目(31801298);山东农业大学“双一流”科技创新团队项目(SYL2017YSTD05)

Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat

LIU Yun-Jing1(), ZHENG Fei-Na1, ZHANG Xiu1, CHU Jin-Peng1, YU Hai-Tao2, DAI Xing-Long1,*(), HE Ming-Rong1,*()   

  1. 1College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong, China
    2Weifang Academy of Agricultural Sciences, Weifang 261061, Shandong, China
  • Received:2021-01-29 Accepted:2021-06-16 Published:2022-03-12 Published online:2021-07-16
  • Contact: DAI Xing-Long,HE Ming-Rong
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300403);Youth Fund Project of National Natural Science Foundation of China(31801298);Funds of Shandong ‘Double Top’ Program(SYL2017YSTD05)

摘要:

宽幅播种与适宜种植密度合理组配能够提高小麦籽粒产量和氮素利用率。然而, 在协同改善产量和氮素利用率的同时, 宽幅播种对籽粒品质有何影响未见报道。本研究于2018—2019和2019—2020连续2个生长季, 选用藁优5766、济麦44、泰山27、洲元9369等4个强筋小麦品种, 设置宽幅播种和常规条播2种播种方式, 研究了宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响。结果表明, 宽幅播种条件下, 主要得益于单位面积穗数的增加, 4个强筋小麦品种的单位面积粒数平均增加13.16%, 籽粒产量相应提高13.39%。与此同时, 宽幅播种强化了整个生育期特别是花后氮素的吸收, 整个生育期小麦植株氮素积累量平均增幅为10.29%, 花后氮素吸收量平均增幅为36.83%, 进而提高了氮素吸收效率和氮素利用率, 平均增幅分别为12.73%、13.39%。整个生育期特别是花后氮素吸收的增加, 保障了籽粒氮素供应, 提高了单位面积籽粒氮积累量, 且其提高幅度(平均增幅为13.38%)与单位面积粒数(平均增幅为13.16%)和籽粒产量(平均增幅为13.39%)的提高幅度相近, 籽粒单粒含氮量和蛋白质含量得以保持不变, 籽粒蛋白质构成和籽粒品质保持稳定。综上所述, 宽幅播种在提高强筋小麦籽粒产量和氮素利用率的同时, 能够通过优化产量形成过程与氮素吸收转运过程的耦合匹配, 保持良好的籽粒品质。

关键词: 宽幅播种, 强筋小麦, 产量, 品质, 氮素利用率

Abstract:

It is well known that wide range sowing can simultaneously improve grain yield (GY) and nitrogen use efficiency (NUE). However, the effects of wide range sowing on grain quality have not been investigated while GY and NUE increased. In the present study, four winter wheat cultivars (Gaoyou 5766, Jimai 44, Taishan 27, and Zhouyuan 9369) were used as experimental materials and two sowing patterns (the wide range sowing and conventional drilling sowing) were designed during 2018-2019 and 2019-2020 growing seasons. Also, we investigated the effects of wide range sowing on GY, NUE, and grain quality. Under wide range sowing, grain number on unit land area were increased by an average of 13.16% across cultivars and growth seasons mainly due to the increase of spike number on unit land area, and in turn GY increased by an average of 13.39%. Meanwhile, nitrogen (N) uptake during whole growth season especially at post-anthesis stage were enhanced. The N accumulation during whole growth season increased by an average of 10.29% while that increased by an average of 36.83% at post-anthesis stage. Consequently, N uptake efficiency and NUE increased by 12.73% and 13.39%, respectively. Enhanced N uptake resulted in a sufficient N supply for grain and a significant increase in grain N accumulation on unit land area. A similar increase magnitude was observed between grain N accumulation (on average 13.38%), grain number (13.16%), and GY (13.39%). As a result, total quantity of N per grain and grain protein concentration remained unchanged, which led to a stable grain protein composition and grain quality. Conclusively, wide range sowing can maintain good grain quality with increased GY and NUE by optimizing coupling of GY formation process with the process of N uptake and translocation.

Key words: wide range sowing, strong gluten wheat, grain yield, grain quality, nitrogen use efficiency

表1

2018-2019和2019-2020生长季冬小麦播前 0~0.20 m和0.20~0.40 m土层基础地力"

年份
Year
土层
Soil layer
(m)
容重
Bulk density
(g cm-3)
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
碱解氮
Alkali-hydrolysable N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2018-2019 0-0.20 1.31 17.80 1.12 84.71 27.84 93.72
0.20-0.40 1.35 13.01 0.88 49.99 15.50 61.54
2019-2020 0-0.20 1.31 16.41 1.14 74.60 30.86 81.61
0.20-0.40 1.35 12.63 0.81 43.22 16.74 47.98

表2

生长季、品种、播种方式对强筋小麦籽粒产量、品质和氮素利用率等参数影响的方差分析"

变异来源
Source of variation
籽粒产量
Grain yield
氮素利用率
NUE
蛋白质含量
GPC
单粒含氮量
Ntot
面团稳定时间
Stability time
面包体积
Loaf volume
生长季S 16.32*** 16.26*** 73.96*** 256.06*** 19.66*** 6.40*
品种C 201.58*** 201.47*** 170.89*** 227.54*** 30.86*** 89.64***
播种方式P 514.50*** 514.62*** 0.29 0.03 0.34 1.48
S×C 69.52*** 69.48*** 46.13*** 63.74*** 5.77** 35.30***
C×P 6.95** 6.97** 1.37 0.56 0.24 0.94
S×P 1.96 1.95 1.57 0.27 0.07 0.09
S×C×P 5.95** 5.96** 1.73 0.07 0.44 0.31

表3

播种方式对强筋小麦籽粒产量及其构成因素的影响"

生长季
Growth season
品种
Cultivars
播种方式
Sowing pattern
籽粒产量
Grain yield
(kg hm-2)
穗数
Spike number
(´104 hm-2)
穗粒数
Grains per spike
单位面积粒数
Grains per unit land area
(´104 m-2)
粒重
Grain weight
(mg)
2018-2019 济麦44
Jimai 44
常规条播 Drilling 7045.85 b 522.00 b 35.17 a 1.84 b 44.13 a
宽幅播种 Wide range 8094.86 a 607.11 a 34.47 b 2.09 a 44.47 a
泰山27
Taishan 27
常规条播 Drilling 8388.16 b 571.78 b 42.30 b 2.42 b 39.87 a
宽幅播种 Wide range 9895.95 a 651.55 a 43.58 a 2.84 a 40.06 a
藁优5766
Gaoyou 5766
常规条播 Drilling 8194.36 b 600.67 b 41.75 a 2.51 b 37.57 a
宽幅播种 Wide range 9154.68 a 680.89 a 41.35 a 2.82 a 37.38 a
洲元9369
Zhouyuan 9369
常规条播 Drilling 8557.63 b 490.89 b 53.07 b 2.61 b 37.77 a
宽幅播种 Wide range 9694.96 a 552.00 a 53.65 a 2.96 a 37.63 a
2019-2020 济麦44
Jimai 44
常规条播 Drilling 7663.93 b 733.14 b 31.19 b 2.29 b 38.53 a
宽幅播种 Wide range 8553.62 a 778.63 a 32.62 a 2.54 a 38.73 a
泰山27
Taishan 27
常规条播 Drilling 7684.36 b 608.82 b 44.78 b 2.73 b 32.40 a
宽幅播种 Wide range 8585.19 a 643.89 a 47.29 a 3.04 a 32.42 a
藁优5766
Gaoyou 5766
常规条播 Drilling 8877.50 b 812.75 b 32.23 b 2.62 b 38.96 a
宽幅播种 Wide range 9549.90 a 847.25 a 33.24 a 2.82 a 38.97 a
洲元9369
Zhouyuan 9369
常规条播 Drilling 9011.54 b 769.22 b 33.84 b 2.60 b 39.79 a
宽幅播种 Wide range 10,661.95 a 860.20 a 35.62 a 3.06 a 39.99 a

图1

播种方式对强筋小麦氮素利用率及其构成因素的影响 不同小写字母表示在0.05水平上差异显著。误差线表示3 次重复的标准误。"

表4

播种方式对强筋小麦籽粒品质的影响"

生长季
Growth season
品种
Cultivars
播种方式
Sowing pattern
蛋白质含量
GPC
(%)
单粒含氮量
Ntot
(mg grain-1)
湿面筋含量
Wet gluten
(%)
面团稳定时间
Stability time
(min)
面包体积
Loaf volume
(mL)
2018-2019 济麦44
JM44
常规条播 Drilling 15.21 a 1.22 a 36.03 a 15.88 a 918.33 a
宽幅播种 Wide range 15.25 a 1.22 a 37.23 a 16.98 a 927.50 a
泰山27
TS27
常规条播 Drilling 14.06 a 0.97 a 34.27 a 11.18 a 975.83 a
宽幅播种 Wide range 14.11 a 0.97 a 33.97 a 12.69 a 995.00 a
藁优5766
GY5766
常规条播 Drilling 14.35 a 1.04 a 35.50 a 26.40 a 843.33 a
宽幅播种 Wide range 14.44 a 1.03 a 37.23 a 26.66 a 883.33 a
洲元9369
ZY9369
常规条播 Drilling 13.94 a 1.07 a 38.10 a 12.19 a 850.83 a
宽幅播种 Wide range 13.84 a 1.10 a 37.87 a 12.10 a 844.17 a
2019-2020 济麦44
JM44
常规条播 Drilling 14.41 a 1.15 a 30.90 a 15.14 a 812.50 a
宽幅播种 Wide range 14.31 a 1.14 a 31.46 a 14.68 a 820.83 a
泰山27
TS27
常规条播 Drilling 12.88 a 0.96 a 29.80 a 11.77 a 947.50 a
宽幅播种 Wide range 12.98 a 0.95 a 29.22 a 10.36 a 968.33 a
藁优5766
GY5766
常规条播 Drilling 13.26 a 0.94 a 29.97 a 16.51 a 789.17 a
宽幅播种 Wide range 13.32 a 0.93 a 29.57 a 18.45 a 797.00 a
洲元9369
ZY9369
常规条播 Drilling 12.92 a 0.80 a 32.23 a 5.33 a 736.67 a
宽幅播种 Wide range 12.85 a 0.81 a 32.53 a 7.12 a 719.17 a

图2

播种方式对强筋小麦开花期和成熟期氮素积累的影响 不同小写字母表示在0.05水平上差异显著。误差线表示3次重复的标准误。"

表5

播种方式对强筋小麦氮素积累、转运及对籽粒氮素贡献的影响"

年份
Growth
season
品种
Cultivar
播种方式
Sowing pattern
籽粒氮素积累量
Grain nitrogen accumulation
(kg hm-2)
花前氮素向籽粒转运
Remobilized nitrogen from vegetation organs
at anthesis to grains
花后氮素吸收量
Nitrogen assimilation after anthesis
转运量
RA (kg hm-2)
转运率
NRE (%)
对籽粒氮素
贡献率
CPG (%)
吸收量UA
(kg hm-2)
对籽粒氮素贡献率
CPG (%)
2018-2019 济麦44
JM44
常规条播
Drilling
187.99 b 136.09 b 76.14 a 72.39 a 51.90 b 27.61 b
宽幅播种
Wide range
216.54 a 144.39 a 72.59 b 66.70 b 72.16 a 33.30 a
泰山27
TS27
常规条播
Drilling
206.92 b 162.85 b 74.26 a 78.71 a 44.07 b 21.30 b
宽幅播种
Wide range
245.02 a 178.48 a 72.69 a 72.84 b 66.55 a 27.16 a
藁优5766
GY5766
常规条播Drilling 206.27 b 166.81 a 78.31 a 80.88 a 39.45 b 19.12 b
宽幅播种
Wide range
231.93 a 174.26 a 77.08 b 75.14 b 57.67 a 24.86 a
洲元9369
ZY9369
常规条播
Drilling
209.34 b 167.46 a 74.79 a 79.98 a 41.88 b 20.02 b
宽幅播种
Wide range
235.44 a 176.15 a 73.15 b 74.84 b 59.29 a 25.17 a
年份
Growth
season
品种
Cultivar
播种方式
Sowing pattern
籽粒氮素积累量
Grain nitrogen accumulation
(kg hm-2)
花前氮素向籽粒转运
Remobilized nitrogen from vegetation organs
at anthesis to grains
花后氮素吸收量
Nitrogen assimilation after anthesis
转运量
RA (kg hm-2)
转运率
NRE (%)
对籽粒氮素
贡献率
CPG (%)
吸收量
UA
(kg hm-2)
对籽粒氮素贡献率
CPG (%)
2019-2020 济麦44
JM44
常规条播
Drilling
193.69 b 134.73 b 62.27 a 69.58 a 58.96 b 30.42 b
宽幅播种
Wide range
214.71 a 144.81 a 61.97 a 67.46 b 69.90 a 32.54 a
泰山27
TS27
常规条播
Drilling
189.86 b 122.02 b 62.38 a 64.27 a 67.84 b 35.73 b
宽幅播种
Wide range
210.50 a 130.13 a 61.20 a 61.82 b 80.37 a 38.18 a
藁优5766
GY5766
常规条播
Drilling
222.08 b 133.85 a 67.75 a 60.27 a 88.24 b 39.73 b
宽幅播种
Wide range
239.90 a 138.90 a 63.70 b 57.91 b 100.99 a 42.09 a
洲元9369
ZY9369
常规条播
Drilling
220.10 b 148.44 b 68.90 b 67.45 a 71.67 b 32.55 b
宽幅播种
Wide range
259.03 a 163.31 a 72.89 a 63.05 b 95.73 a 36.95 a
[1] Dupont F M, Altenbach S B. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J Cereal Sci, 2003, 38:133-146.
doi: 10.1016/S0733-5210(03)00030-4
[2] 王月福, 于振文, 李尚霞, 余松烈. 施氮量对小麦籽粒蛋白质组分含量及加工品质的影响. 中国农业科学, 2002, 35:1071-1078.
Wang Y F, Yu Z W, Li S X, Yu S L. Effects of nitrogen application amount on content of protein components and processing quality of wheat grain. Sci Agric Sin, 2002, 35:1071-1078 (in Chinese with English abstract).
[3] 赵俊晔, 于振文. 不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响. 生态学报, 2006, 26:815-822.
Zhao J Y, Yu Z W. Effects of nitrogen rate on nitrogen fertilizer use of winter wheat and content of soil nitrate-N under different fertility condition. Acta Ecol Sin, 2006, 26:815-822 (in Chinese with English abstract).
[4] Slafer G A, Andrade F H, Feingold S E. Triticum aestivum L.) in Argentina: relationships between nitrogen and dry matter Triticum aestivum L.) in Argentina: relationships between nitrogen and dry matter. Euphytica, 1990, 50:63-71.
doi: 10.1007/BF00023162
[5] Simmonds N W. The relation between yield and protein in cereal grain. J Sci Food Agric, 2010, 67:309-315.
doi: 10.1002/(ISSN)1097-0010
[6] Feil B. The inverse yield-protein relationship in cereals: possibilities and limitations for genetically improving the grain protein yield. Trends Agron, 1997, 1:103-119.
[7] Munier-Jolain N G, Salon C. Are the carbon costs of seed production related to the quantitative and qualitative performance? An appraisal for legumes and other crops. Plant Cell Environ, 2010, 28:1388-1395.
doi: 10.1111/pce.2005.28.issue-11
[8] Acreche M M, Slafer G A. Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. J Agric Sci, 2009, 147:657-667.
doi: 10.1017/S0021859609990190
[9] Bogard M, Allard V, Brancourt-Hulmel M, Heumez E, Machet J M, Jeuffroy M H, Gate P, Martre P, Gouis J L. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. J Exp Bot, 2010, 61:4303-4312.
doi: 10.1093/jxb/erq238
[10] 李世莹, 冯伟, 王永华, 王晨阳, 郭天财. 宽幅播种带间距对冬小麦冠层特征及产量的影响. 植物生态学报, 2013, 37:758-767.
doi: 10.3724/SP.J.1258.2013.00079
Li S Y, Feng W, Wang Y H, Wang C Y, Guo T C. Effects of spacing interval of wide bed planting on canopy characteristics and yield in winter wheat. Chin J Plant Ecol, 2013, 37:758-767 (in Chinese with English abstract).
[11] 石玉华, 初金鹏, 尹立俊, 贺明荣, 邓淑珍, 张良, 孙晓乐, 田奇卓, 代兴龙. 宽幅播种提高不同播期小麦产量与氮素利用率. 农业工程学报, 2018, 34(17):127-133.
Shi Y H, Chu J P, Yin L J, He M R, Deng S Z, Zhang L, Sun X L, Tian Q Z, Dai X L. Wide-range sowing improving yield and nitrogen use efficiency of wheat sown at different dates. Trans CSAE, 2018, 34(17):127-133 (in Chinese with English abstract).
[12] 初金鹏, 朱文美, 尹立俊, 石玉华, 邓淑珍, 张良, 贺明荣, 代兴龙. 宽幅播种对冬小麦‘泰农 18’产量和氮素利用率的影响. 应用生态学报, 2018, 29:2517-2524.
Chu J P, Zhu W M, Yin L J, Shi Y H, Deng S Z, Zhang L, He M R, Dai X L. Effects of wide-range planting on the yield and nitrogen use efficiency of winter wheat cultivar Tainong 18. Chin J Appl Ecol, 2018, 29:2517-2524 (in Chinese with English abstract).
[13] 郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46:423-431.
doi: 10.3724/SP.J.1006.2020.91046
Zheng F N, Chu J P, Zhang X, Fei L W, Dai X L, He M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agron Sin, 2020, 46:423-431 (in Chinese with English abstract).
[14] 朱元刚, 初金鹏, 张秀, 钤太峰, 代兴龙, 贺明荣. 不同播期冬小麦氮素出籽效率与氮素利用及转运的相关性. 应用生态学报, 2019, 30:1151-1160.
Zhu Y G, Chu J P, Zhang X, Qian T F, Dai X L, He M R. Correlation between nitrogen fruiting efficiency and nitrogen utilization and remobilization in winter wheat at different sowing dates. Chin J Appl Ecol, 2019, 30:1151-1160 (in Chinese with English abstract).
[15] 姜丽娜, 张雅雯, 朱娅林, 赵凌霄. 施氮量对不同品种小麦物质积累、转运及产量的影响. 作物杂志, 2019, (5):151-158.
Jiang L N, Zhang Y W, Zhu Y L, Zhao L X. Effects of nitrogen application on dry matter accumulation, transport and yield in different wheat varieties. Crops, 2019, (5):151-158 (in Chinese with English abstract).
[16] Zhu J, Khan K. Effects of genotype and environment on glutenin polymers and breadmaking quality. Cereal Chem, 2001, 78:125-130.
doi: 10.1094/CCHEM.2001.78.2.125
[17] Masclaux-Daubresse C, Chardon F. Arabidopsis thaliana Arabidopsis thaliana. J Exp Bot, 2011, 62:2131-2142.
doi: 10.1093/jxb/erq405 pmid: 21273332
[18] Delcour J A, Joye I J, Pareyt B, Wilderjans E, Lagrain B. Wheat gluten functionality as a quality determinant in cereal-based food products. Annu Rev Food Sci Technol, 2012, 3:469-492.
doi: 10.1146/food.2012.3.issue-1
[19] Goesaert H, Brijs K, Veraverbeke W S, Courtin C M, Gebruers K, Delcour J A. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol, 2005, 16:12-30.
doi: 10.1016/j.tifs.2004.02.011
[20] Weegels P L, Hamer R J, Schofield J D. Functional properties of wheat glutenin. J Cereal Sci, 1996, 23:1-17.
doi: 10.1006/jcrs.1996.0001
[21] Johansson E, Prieto-Linde M L, Jönsson J Ö. Effects of wheat cultivar and nitrogen application on storage protein composition and breadmaking quality. Cereal Chem, 2001, 78:19-25.
doi: 10.1094/CCHEM.2001.78.1.19
[22] Singh H, Macritchie F. Application of polymer science to properties of gluten. J Cereal Sci, 2001, 33:231-243.
doi: 10.1006/jcrs.2000.0360
[23] Fuertes-Mendizábal T, Aizpurua A, González-Moro M B, Estavillo J M. Improving wheat bread making quality by splitting the N fertilizer rate. Eur J Agron, 2010, 33:52-61.
doi: 10.1016/j.eja.2010.03.001
[24] Aguirrez L, Martre P, Pereyra-Irujo G, Izquierdo N, Allard V. Management and breeding strategies for the improvement of grain and oil quality. Crop Physiol, 2009, 28:387-421.
[25] Zhou B, Serret M D, Elazab A, Pie J B, Araus J L, Aranjuelo I, Sanz-Saez A. Wheat ear carbon assimilation and nitrogen remobilization contribute significantly to grain yield. J Integr Plant Biol, 2016, 58:914-926.
doi: 10.1111/jipb.12478
[1] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[2] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[3] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[4] 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
[5] 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052.
[6] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响[J]. 作物学报, 2022, 48(7): 1730-1745.
[7] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[8] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[9] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[10] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[11] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[12] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[13] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[14] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[15] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .