欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 704-715.doi: 10.3724/SP.J.1006.2022.11007

• 耕作栽培·生理生化 • 上一篇    下一篇

小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应

冯健超1(), 许倍铭1, 江薛丽1, 胡海洲1, 马英1, 王晨阳1,2, 王永华1, 马冬云1,2,*()   

  1. 1河南农业大学农学院/国家小麦工程技术研究中心, 河南郑州 450046
    2河南农业大学/省部共建小麦玉米作物学国家重点实验室, 河南郑州 450046
  • 收稿日期:2021-01-13 接受日期:2021-06-16 出版日期:2022-03-12 网络出版日期:2021-07-22
  • 通讯作者: 马冬云
  • 作者简介:E-mail: fjc000@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0300404);河南省科技攻关项目(152102110067)

Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application

FENG Jian-Chao1(), XU Bei-Ming1, JIANG Xue-Li1, HU Hai-Zhou1, MA Ying1, WANG Chen-Yang1,2, WANG Yong-Hua1, MA Dong-Yun1,2,*()   

  1. 1National Engineering Research Center for Wheat/Agronomy College of Henan Agricultural University, Zhengzhou 450046, Henan, China
    2National Key Laboratory of Wheat and Maize Crop Science/Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2021-01-13 Accepted:2021-06-16 Published:2022-03-12 Published online:2021-07-22
  • Contact: MA Dong-Yun
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300404);Science and Technology Project of Henan Province(152102110067)

摘要:

明确酚类物质在籽粒不同层次的分布规律及对氮肥调控的响应, 为小麦品质改良及优质栽培提供科学依据。本研究以紫麦(冀紫439)和白麦(鑫华麦818)为材料, 于2019—2020年分别在郑州和原阳设置高氮(HN, 210 kg N hm-2)和低氮(LN, 105 kg N hm-2)处理, 采用分层碾磨方法将籽粒从外向内依次分为5层(LY1, LY2, LY3, LY4, LY5), 测定不同层次籽粒中的总酚、总类黄酮、花青素含量及其抗氧化活性。结果表明, 游离酚和结合酚提取物中的总酚、总类黄酮、花青素含量以及抗氧化活性(TEAC、FRAP)从籽粒外层到内层呈下降趋势。紫麦籽粒不同层次抗氧化物含量及抗氧化活性均高于白麦, 但两品种之间的差异随着研磨程度的加深呈下降趋势。籽粒LY1~LY3中总酚、总类黄酮和花青素含量随着施氮量的增加而增加(原阳LY1总酚除外), 而内层LY4~LY5对増施氮肥的响应较弱, 且存在地点间差异。小麦籽粒酚酸组分中阿魏酸占全部组分93%以上, 且表现为在低氮条件下含量增高。综上所述, 紫麦具有较高的酚类等抗氧化物质, 但与白麦之间的差异随着研磨程度的加深而下降; 籽粒外层抗氧化物质含量和抗氧化活性对氮肥调控具有较强的响应, 且含量随着氮肥増施而增加。

关键词: 小麦, 分层碾磨, 抗氧化物质, 酚酸, 氮肥

Abstract:

Clarifying the distribution of phenolic compounds in layered grinding wheat flour and its response to nitrogen fertilizer application would provide useful information for wheat quality improvement and high-quality cultivation. Two wheat cultivars, purple wheat (Jizi 439) and white wheat (Xinhuamai 818), were planted with two nitrogen application rate (HN, N 210 kg hm-2; LN, N 105 kg hm-2) in Zhengzhou and Yuanyang experimental sites during growing period in 2019 and 2020. The mature grains were ground into five milling fractionations (LY1, LY2 LY3, LY4, and LY5) from the bran layer to the endospermic layer by layered grinding, and the total phenolic content (TPC), the total flavonoids content (TFC), and the anthocyanin content (AC), and their antioxidant activity were determined. The results showed that the TPC, TFC, AC, and antioxidant activity (TEAC, FRAP) in free phenols and conjugated phenols extracts decreased from the outer layer flour fractionation to the inner layer flour fractionation. The purple wheat, named as Jizi 439, had a higher antioxidant content and antioxidant activity than white wheat (Xinhuamai 818), but the difference between the two cultivars displayed a decreasing trend from the bran layer flour fractionation to endosperm layer flour fractionation. The TPC, TFC, and AC of LY1 to LY3 flour fractionation increased with the increase of nitrogen fertilizer application except for TPC of LY1 in Yuanyang. However, the contents of total phenolics and total flavonoids of LY4 to LY5 flour fractionation had a weak response to nitrogen fertilizer application. The content of ferulic acid accounted for more than 93% of the TPC in wheat grains and had a higher value under low nitrogen condition. In conclusion, purple wheat had higher antioxidant substances such as phenolics than white wheat, and the difference between purple wheat and white wheat decreased with the deepening of grinding degree. The content and activity of antioxidants in the outer layer flour fractionation were significantly responsive to nitrogen regulation, and the content increased with the increase of nitrogen.

Key words: wheat, layered grinding wheat flour, antioxidant substance, phenolic acid, nitrogen fertilizer

图1

2019-2020年降雨量与月平均温度变化"

图2

冀紫麦439逐层研磨后的籽粒形状"

图3

不同研磨程度下小麦籽粒中的总酚含量 XH-N105、XH-N210、JZ-N105、JZ-N210分别表示鑫华麦818的105 N hm-2处理、鑫华麦818的210 N hm-2处理、冀紫439的105 N hm-2处理和冀紫439的210 N hm-2处理。柱上不同小写字母表示同一层次面粉之间差异显著(P < 0.05)。"

图4

不同研磨程度下小麦籽粒中的总类黄酮含量 XH-N105、XH-N210、JZ-N105、JZ-N210分别表示鑫华麦818的105 N hm-2处理、鑫华麦818的210 N hm-2处理、冀紫439的105 N hm-2处理和冀紫439的210 N hm-2处理。柱上不同小写字母表示同一层次面粉之间差异显著(P < 0.05)。处理同图3。"

图5

不同研磨程度下小麦籽粒中的花青素含量 XH-N105、XH-N210、JZ-N105、JZ-N210分别表示鑫华麦818的105 N hm-2处理、鑫华麦818的210 N hm-2处理、冀紫439的105 N hm-2处理和冀紫439的210 N hm-2处理。柱上不同小写字母表示同一层次面粉之间差异显著(P < 0.05)。处理同图3。"

图6

不同研磨程度下面粉中TEAC的差异 XH-N105, XH-N210, JZ-N105, JZ-N210分别表示鑫华麦818的105 N hm-2处理、鑫华麦818的210 N hm-2处理、冀紫439的105 N hm-2处理和冀紫439的210 N hm-2处理。柱上不同小写字母表示同一层次面粉之间差异显著(P < 0.05)。处理同图3。"

图7

不同研磨程度下面粉中FRAP的差异 XH-N105、XH-N210、JZ-N105、JZ-N210分别表示鑫华麦818的105 N hm-2处理、鑫华麦818的210 N hm-2处理、冀紫439的105 N hm-2处理和冀紫439的210 N hm-2处理。柱上不同小写字母表示同一层次面粉之间差异显著(P < 0.05)。处理同图3。"

表1

氮肥对小麦籽粒中不同酚酸组分含量的影响"

地点
Site
酚类
Phenols
品种
Cultivar
处理
Treatment
香草酸
Vanilic
acid
咖啡酸
Caffeic
acid
丁香酸
Syringic
acid
对香豆酸
p-Coumaric
acid
阿魏酸
Ferulic
acid
总酚酸
Total phenolic
acid
郑州
Zhengzhou
游离酚
Free phenol
鑫华麦818
Xinhua 818
N105 1.81 f 0.18 d 0.16 f 2.37 e 0.48 d 4.99 e
N210 2.72 e 0.23 d 0.26 e 0.17 f 0.46 d 3.83 e
冀紫439
Jizi 439
N105 2.78 e 0.38 d 0.33 d 2.25 e 1.49 d 7.22 e
N210 2.65 e 0.64 cd 0.27 e 0.05 f 0.75 d 4.35 e
结合酚
Bound phenol
鑫华麦818
Xinhua 818
N105 8.81 c 2.44 a 1.34 c 14.61 a 440.45 bc 467.65 c
N210 5.58 d 1.07 bc 1.97 a 11.38 c 433.60 c 453.59 d
冀紫439
Jizi 439
N105 15.96 a 1.59 b 1.54 b 12.84 b 517.85 a 549.77 a
N210 10.30 b 2.31 a 1.92 a 10.13 d 455.89 b 480.54 b
原阳
Yuanyang
游离酚
Free phenol
鑫华麦818
Xinhua 818
N105 2.23 f 0.155 e 0.22 e 0.63 de 1.16 e 4.39 e
N210 2.35 f 0.20 e 0.31 d 0.43 de 1.16 e 4.45 e
冀紫439
Jizi 439
N105 3.05 e 0.82 d 0.39 d 1.11 d 0.94 e 6.30 e
N210 3.71 d 0.64 d 0.21 e 0.14 e 0.86 e 5.55 e
结合酚
Bound phenol
鑫华麦818
Xinhua 818
N105 6.18 b 2.42 b 1.74 c 9.57 b 383.27 c 403.18 c
N210 4.14 d 1.96 c 1.78 c 8.31 c 339.56 d 355.75 d
冀紫439
Jizi 439
N105 15.54 a 2.27 bc 1.81 b 11.85 a 533.25 a 564.73 a
N210 15.42 a 2.82 a 1.98 a 11.92 a 503.03 b 535.17 b

图8

不同研磨程度下面粉中DPPH的差异 XH-N105、XH-N210、JZ-N105、JZ-N210分别表示鑫华麦818的105N hm-2处理、鑫华麦818的210 N hm-2处理、冀紫439的105 N hm-2处理和冀紫439的210N hm-2处理。柱上不同小写字母表示同一层次面粉之间差异显著(P < 0.05)。处理同图3。"

[1] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4):1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4):1-7 (in Chinese with English abstract).
[2] Brandolini A, Castoldi P, Plizzari L, Hidalgo A. Triticum monococcum, Triticum turgidum and Triticum aestivum: a two-years evaluation Triticum monococcum, Triticum turgidum and Triticum aestivum: a two-years evaluation. J Cereal Sci, 2013, 58:123-131.
doi: 10.1016/j.jcs.2013.03.011
[3] Xiao J, Kai G, Yamamoto K, Chen X. Advance in dietary polyphenols as α-glucosidases inhibitors: a review on structure-activity relationship aspect. Crit Rev Food Sci, 2013, 53:818-836.
doi: 10.1080/10408398.2011.561379
[4] Mozaffarian D, Kumanyika S K, Lemaitre R N, Olson J L, Siscovick D S. Cereal, fruit, and vegetable fiber intake and the risk of cardiovascular disease in elderly individuals. JAMA, 2003, 289:1659-1666.
doi: 10.1001/jama.289.13.1659
[5] Dykes L, Rooney L W. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World, 2007, 52:105-111.
[6] Pérez-Jiménez J, Torres J L. Analysis of nonextractable phenolic compounds in foods: the current state of the art. J Agric Food Chem, 2011, 59:12713-12724.
doi: 10.1021/jf203372w
[7] Fardet A, Rock E, Rémésy C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci, 2008, 48:258-276.
doi: 10.1016/j.jcs.2008.01.002
[8] Li L, Shewry P R, Ward J L. Phenolic acids in wheat varieties in the HEALTHGRAIN Diversity Screen. J Agric Food Chem, 2008, 56:9732-9739.
doi: 10.1021/jf801069s
[9] Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J Chromatogr A, 2004, 1054:95-111.
doi: 10.1016/S0021-9673(04)01409-8
[10] Bunzel M, Ralph J, Marita J M, Hatfield R D, Steinhart H. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric, 2001, 81:653-660.
doi: 10.1002/(ISSN)1097-0010
[11] 宗学凤, 张建奎, 李帮秀, 余国东, 石有明, 王三根. 小麦籽粒颜色与抗氧化作用. 作物学报, 2006, 32:237-242.
Zong X F, Zhang J K, Li B X, Yu G D, Shi Y M, Wang S G. Relationship between antioxidation and grain colors of wheat (Triticum aestivum L.). Acta Agron Sin, 2006, 32:237-242 (in Chinese with English abstract).
[12] Liu Z H, Wang H Y, Wang X E, Zhang G P, Chen P D, Liu D J. Phytase activity, phytate, iron, and zinc contents in wheat pearling fractions and their variation across production locations. J Cereal Sci, 2007, 45:319-326.
doi: 10.1016/j.jcs.2006.10.004
[13] 郭明明, 赵广才, 郭文善, 常旭虹, 王德梅, 杨玉双, 王美, 范仲卿, 亓振, 王雨. 施氮量与行距对冬小麦品质性状的调控效应. 中国生态农业学报, 2015, 23:668-675.
Guo M M, Zhao G C, Guo W S, Chang X H, Wang D M, Yang Y S, Wang M, Fan Z Q, Qi Z, Wang Y. Effects of nitrogen rate and row spacing on winter wheat grain quality. Chin J Eco-Agric, 2015, 23:668-675 (in Chinese with English abstract).
[14] 赵俊晔, 于振文. 高产条件下施氮量对冬小麦氮素吸收分配利用的影响. 作物学报, 2006, 32:484-490.
Zhao J Y, Yu Z W. Effects of nitrogen fertilizer rate on uptake, distribution and utilization of nitrogen in winter wheat under high yielding cultivated condition. Acta Agron Sin, 2006, 32:484-490.
[15] 陆增根, 戴廷波, 姜东, 荆奇, 吴正贵, 周培南, 曹卫星. 氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响. 作物学报, 2007, 33:590-597.
Lu Z G, Dai T B, Jiang D, Jing Q, Wu Z G, Zhou P N, Cao W X. Effects of nitrogen strategies on population quality index and grain yield & quality in weak-gluten wheat. Acta Agron Sin, 2007, 33:590-597 (in Chinese with English abstract).
[16] 代新俊, 杨珍平, 陆梅, 李慧, 樊攀, 宋佳敏, 高志强. 不同形态氮肥及其用量对强筋小麦氮素转运, 产量和品质的影响. 植物营养与肥料学报, 2019, 25:701-720.
Dai X J, Yang Z P, Lu M, Li H, Fan P, Song J M, Gao Z Q. Effects of nitrogen forms and amounts on nitrogen translocation, yield and quality of strong-gluten wheat. Plant Nutr Fert Sci, 2019, 25:701-720 (in Chinese with English abstract).
[17] 石玉, 张永丽, 于振文. 施氮量对不同品质类型小麦子粒蛋白质组分含量及加工品质的影响. 植物营养与肥料学报, 2010, 16:33-40.
Shi Y, Zhang Y L, Yu Z W. Effects of nitrogen fertilization on protein components contents and processing quality of different wheat genotypes. Plant Nutr Fert Sci, 2010, 16:33-40 (in Chinese with English abstract).
[18] Engert N, John A, Henning W, Honermeier B. Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization. J Appl Bot Food Qual, 2011, 84:111-118.
[19] 孙德祥, 马冬云, 王晨阳, 李耀光, 刘卫星, 李秋霞, 冯伟, 郭天财. 不同水氮处理对豫麦49-198籽粒抗氧化物含量的影响. 作物学报, 2014, 40:2046-2051.
doi: 10.3724/SP.J.1006.2014.02046
Sun D X, Ma D Y, Wang C Y, Li Y G, Liu W X, Li Q X, Feng W, Guo T C. Effects of irrigation and nitrogen on antioxidant contents in Yumai 49-198 grains. Acta Agron Sin, 2014, 40:2046-2051 (in Chinese with English abstract).
[20] Wang Y, Li C, Wang Q, Wang H, Duan B, Zhang G. Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. J Soil Sediment, 2016, 16:1858-1870.
doi: 10.1007/s11368-016-1375-8
[21] He J, Penson S, Powers S J, Hawes C, Tosi P. Spatial patterns of gluten protein and polymer distribution in wheat grain. J Agric Food Chem, 2013, 61:6207-6215.
doi: 10.1021/jf401623d
[22] Wan Y, Gritsch C S, Hawkesford M J, Shewry P R. Effects of nitrogen nutrition on the synthesis and deposition of the ω-gliadins of wheat. Ann Bot, 2014, 4:607-615.
doi: 10.1093/aob/4.3.607
[23] Adom K K, Liu R H. Antioxidant activity of grains. J Agric Food Chem, 2002, 50:6182-6187.
doi: 10.1021/jf0205099
[24] Yu L, Haley S, Perret J, Harris M. Antioxidant properties of hard winter wheat extracts. Food Chem, 2002, 78:457-461.
doi: 10.1016/S0308-8146(02)00156-5
[25] Chlopicka J, Pasko P, Gorinstein S, Jedryas A, Zagrodzki P. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT-Food Sci Technol, 2012, 46:548-555.
doi: 10.1016/j.lwt.2011.11.009
[26] Sochor J, Ryvolova M, Krystofova O, Salas P, Kizek R. Fully automated spectrometric protocols for determination of antioxidant activity. advantages and disadvantages. Molecules, 2010, 15:8618-8640.
doi: 10.3390/molecules15128618 pmid: 21116230
[27] Huang D, Ou B, Prior R L. The chemistry behind antioxidant capacity assays. J Agric Food Chem, 2005, 53:1841-1856.
doi: 10.1021/jf030723c
[28] Abdel-Aal E S M, Young J C, Rabalski I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J Agric Food Chem, 2006, 54:4696-4704.
doi: 10.1021/jf0606609
[29] Žilić S, Serpen A, Akıllıoğlu G, Janković M, Gökmen V. Distributions of phenolic compounds, yellow pigments and oxidative enzymes in wheat grains and their relation to antioxidant capacity of bran and rebranded flour. J Cereal Sci, 2012, 56:652-658.
doi: 10.1016/j.jcs.2012.07.014
[30] Hung P V, Maeda T, Miyatake K, Morita N. Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Food Res Int, 2009, 42:185-190.
doi: 10.1016/j.foodres.2008.10.005
[31] Ma D Y, Li Y G, Zhang J, Wang C Y, Qin H X, Ding H N, Xie Y X, Guo T C. Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat. Front Plant Sci, 2016, 7:528.
[32] Liu Q, Qiu Y, Beta T. Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds. J Agric Food Chem, 2010, 58:9235.
doi: 10.1021/jf101700s
[33] 刘富明, 母婷婷, 王彩霞, 李诚, 蒲至恩. 蓝色和紫色小麦多酚提取物的体外抗氧化活性评价. 食品与发酵工业, 2019, 45:202-206.
Liu F M, Mu T T, Wang C X, Li C, Pu Z E. Evaluation of in vitro antioxidant activities of polyphenol extracts from blue and purple wheat. Food Ferment Ind, 2019, 45:202-206 (in Chinese with English abstract).
[34] Adom K K, Sorrells M E, Liu R H. Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem, 2003, 51:7825-7834.
doi: 10.1021/jf030404l
[35] 胡一晨, 赵钢, 秦培友, 成颜芬, 曹亚楠, 邹亮, 任贵兴. 藜麦活性成分研究进展. 作物学报, 2018, 44:1579-1591.
Hu Y C, Zhao G, Qin P Y, Cheng Y F, Cao Y N, Zou L, Ren G X. Research progress on bioactive components of quinoa (Chenopodium quinoa Willd.). Acta Agron Sin, 2018, 44:1579-1591 (in Chinese with English abstract).
[36] Engert N, John A, Henning W, Honermeier B. Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization. J Appl Bot Food Qual, 2011, 84:111-118.
[37] Langenkmper G, Zrb C, Seifert M, Mder P, Betsche T. Nutritional quality of organic and conventional wheat. J Appl Bot Food Qual, 2006, 80:150-154.
[38] Fares C, Menga V, Codianni P, Russo M, Perrone D, Suriano S, Michele S, Rascio A. Phenolic acids variability and grain quality of organically and conventionally fertilised old wheats under a warm climate. J Sci Food Agric, 2019, 99:4615-4623.
doi: 10.1002/jsfa.2019.99.issue-10
[39] Stracke B A, Eitel J, Watzl B, Mäder P, Rüfer C. Triticum aestivum L.): a comparative study Triticum aestivum L.): a comparative study. J Agric Food Chem, 2009, 57:10116-10121.
doi: 10.1021/jf901267z
[40] Pandino G, Mattiolo E, Lombardo S, Lombardo G M, Mauromicale G. Organic cropping system affects grain chemical composition, rheological and agronomic performance of durum wheat. Agriculture-Basel, 2020, 10:46.
[1] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[2] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[3] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[4] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[5] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
[6] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[7] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[8] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[9] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[10] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[11] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[12] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[13] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[14] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[15] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[10] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .