欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2390-2399.doi: 10.3724/SP.J.1006.2022.11070

• 研究简报 • 上一篇    下一篇

高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用

李永波1(), 崔德周1, 黄琛1, 隋新霞1, 樊庆琦1,*(), 楚秀生1,2,*   

  1. 1.山东省农业科学院作物研究所 / 黄淮北部小麦生物学与遗传育种重点实验室 / 小麦玉米国家工程实验室, 山东济南 250100
    2.山东师范大学生命科学学院, 山东济南 250014
  • 收稿日期:2021-08-06 接受日期:2021-11-30 出版日期:2022-09-12 网络出版日期:2022-07-15
  • 通讯作者: 樊庆琦,楚秀生
  • 作者简介:E-mail: lyb920327@sina.com
  • 基金资助:
    山东省农业良种工程项目(2019LZGC01702);国家自然科学基金青年项目(32001542);山东省自然科学基金青年项目(ZR2020QC114);山东省农科院创新工程: “主要农作物育种关键技术”项目(CXGC2021A09)

Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy

LI Yong-Bo1(), CUI De-Zhou1, HUANG Chen1, SUI Xin-Xia1, FAN Qing-Qi1,*(), CHU Xiu-Sheng1,2,*   

  1. 1. Crop Research Institute, Shandong Academy of Agricultural Sciences / Key Laboratory of Wheat Biology and Genetic improvement in North Huang-Huai River Valley, Ministry of Agriculture and Rural Affairs / National Engineering Laboratory for Wheat and Maize, Jinan 250100, Shandong, China
    2. School of Life Science, Shandong Normal University, Jinan 250000, Shandong, China
  • Received:2021-08-06 Accepted:2021-11-30 Published:2022-09-12 Published online:2022-07-15
  • Contact: FAN Qing-Qi,CHU Xiu-Sheng
  • Supported by:
    Agricultural Variety Improvement Project of Shandong Province(2019LZGC01702);National Natural Science Foundation of China (Youth Project)(32001542);Shandong Natural Science Foundation (Youth Project)(ZR2020QC114);“Key Crop Breeding Technology”(CXGC2021A09)

摘要:

细胞自噬是一种进化上高度保守的溶酶体/液泡降解途径, 对机体适应各种生物或非生物胁迫, 以及维持自身正常生长发育具有重要的意义。自噬相关蛋白8 (autophagy-related protein 8, ATG8)是检测自噬的金标准。目前由于缺乏特异性好的小麦ATG8抗体, 导致小麦细胞自噬研究进展缓慢。本研究通过人工合成小麦ATG8蛋白序列上的一段18个氨基酸的多肽作为抗原去免疫兔子, 成功获得了高度特异性的小麦ATG8多克隆抗体。该抗体不仅能够识别小麦根、叶及种子中的ATG8蛋白条带, 而且可以在根、叶中检测到细胞自噬结构, 并首次在小麦籽粒中实现了细胞自噬结构的检测。本研究研制的小麦ATG8抗体, 除了能够检测到小麦中常见的ATG8a-h等8种典型类型外, 还能检测到一种非典型的新的ATG8蛋白, 为深入开展植物细胞自噬调控机制研究以及优异新基因挖掘提供了最佳方法学基础。

关键词: 小麦, 自噬, 多克隆抗体, ATG8蛋白

Abstract:

Autophagy is an evolutionarily highly conserved lysosomal/vacuolar degradation pathway, which is of great significance for the body to adapt to various biotic or abiotic stresses and maintain its normal growth and development. Autophagy-related protein 8 (ATG8) is the gold standard for detecting autophagy. At present, the lack of specific wheat ATG8 antibody has led to slow progress in the research of wheat autophagy. In this study, an 18-amino acid polypeptide of wheat ATG8 protein sequence was artificially synthesized as an antigen to immunize rabbits, and a highly specific wheat ATG8 polyclonal antibody was successfully obtained. The antibody can not only recognize the ATG8 protein bands in roots, leaves, and seeds of wheat, but also can detect autophagy structures in roots and leaves, and autophagy structures in wheat grains were detected for the first time. Besides eight typical types of ATG8a-h antibody found in wheat, a typical new ATG8 protein was detected by wheat ATG8 antibody developed in this study, These results provide the best methodological basis for further study on the regulation mechanism of plant autophagy and excavation of excellent genes.

Key words: wheat, autophagy, polyclonal antibody, autophagy-related protein 8

图1

ATG8抗血清效价分析"

图2

ATG8抗体特异性检测 SDS胶浓度为12.5%。"

表1

质谱鉴定ATG8蛋白"

起始
Start
序列
Sequence
结束
End
蛋白鉴定
Protein ID
名称
Name
4 SSFKLEHPLER 14 U3Q019 Autophagy-related protein 8
4 TCFKTEHPLER 14 Q7XY24 Autophagy-related protein 8
24 EKYSDRIPVIVEK 36 U3Q019 Autophagy-related protein 8
24 EKYADRIPVIVEK 36 Q7XY24 Autophagy-related protein 8
37 ADKSDVPEIDKKK 49 Q7XY24 Autophagy-related protein 8
37 AGKSDIPDIDK 47 U3Q019 Autophagy-related protein 8
49 KYLVPADLTVGQFVYVVR 66 U3Q019 Autophagy-related protein 8
69 IKLSAEKAIFIFVK 82 U3Q019 Autophagy-related protein 8
83 NTLPPTAALMSAIYEENKDEDGFLYMTYSGENTFG 117 U3Q019 Autophagy-related protein 8

图3

Western blot检测ATG8蛋白 α-Tubulin用作内参, SDS胶浓度为15%; 3-MA: 3-MA+PEG-8000; 浓度为10 mmol L-1; 处理时间为48 h; 总蛋白上样量均为1 mg; 误差是3次实验数据平均值±SD。不同的字母代表显著性差异。."

图4

小麦根部细胞自噬结构检测 白色箭头指示的是自噬结构, 标尺为500 μm。选取不同处理根部的相同部位, 置于10×10倍显微镜下, 并通过ANOVA软件对每个视野中的自噬结构数量进行统计学分析。不同的字母代表显著性差异。误差是3次实验数据平均值±SD。"

图5

小麦根部细胞自噬结构统计分析 选取不同处理根部的相同部位, 置于10×10倍显微镜下, 并通过ANOVA软件对每个视野中的自噬结构数量进行统计学分析。不同的字母代表显著性差异。误差是3次实验数据平均值±SD。"

图6

小麦叶部细胞自噬结构检测 白色箭头指示自噬结构, 标尺: 50 μm。选取不同处理叶部的相同部位, 置于10×20倍显微镜下, 并通过ANOVA软件对每个视野中的自噬结构数量进行统计学分析, 不同的字母代表显著性差异。误差是3次实验数据平均值±SD。"

图7

小麦叶部细胞自噬结构统计分析 选取不同处理叶部的相同部位, 置于10×20倍显微镜下, 并通过ANOVA软件对每个视野中的自噬结构数量进行统计学分析, 不同的字母代表显著性差异。误差是3次实验数据平均值±SD。"

图8

小麦籽粒自噬结构检测 白色短箭头指示胚乳中的自噬结构, 黄色短箭头指示果皮中的自噬结构, 长箭头指示籽粒的不同结构; 标尺为200 μm。Al (Aleurone layer): 糊粉层; En (Endosperm): 胚乳; Pe (Pericarp): 果皮。"

图9

不同类型的小麦ATG8蛋白表达、纯化及抗体识别 SDS胶浓度为15%。"

图10

同源系统进化树分析 红色矩形区域为ATG8新型蛋白, ATG8j; ATG8a (AGW81789.1), ATG8b (AGW81790.1), ATG8c (AGW81791.1), ATG8d (AGW81792.1), ATG8e (AGW81793.1), ATG8f (AGW81794.1), ATG8g (AGW81795.1), ATG8h (AGW81796.1), ATG8j (A0A3B6PL31)。"

[1] Ghosh A, Jana M, Modi K, Gonzalez F J, Sims K B, Berry-Kravis E, Pahan K. Activation of peroxisome proliferator-activated receptor alpha induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J Biol Chem, 2015, 290: 10309-10324.
[2] Feng Y, He D, Yao Z, Klionsky D J. The machinery of macroautophagy. Cell Res, 2014, 24: 24-41.
doi: 10.1038/cr.2013.168
[3] Yin Z, Pascual C, Klionsky D J. Autophagy: machinery and regulation. Microb Cell, 2016, 3: 588-596.
doi: 10.15698/mic2016.12.546
[4] Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 2007, 130: 165-178.
pmid: 17632063
[5] Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature, 2000, 408: 488-492.
doi: 10.1038/35044114
[6] Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell, 2004, 16: 2967-2983.
pmid: 15494556
[7] Bassham D C. Methods for analysis of autophagy in plants. Methods, 2015, 75: 181-188.
doi: 10.1016/j.ymeth.2014.09.003 pmid: 25239736
[8] Thompson A R, Doelling J H, Suttangkakul A, Vierstra R D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol, 2005, 138: 2097-2110.
pmid: 16040659
[9] Chung T, Phillips A R, Vierstra R D. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J, 2010, 62: 483-493.
doi: 10.1111/j.1365-313X.2010.04166.x
[10] Kuzuoglu-Ozturk D, Cebeci Yalcinkaya O, Akpinar B A, Mitou G, Korkmaz G, Gozuacik D, Budak H. Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta, 2012, 236: 1081-1092.
doi: 10.1007/s00425-012-1657-3 pmid: 22569921
[11] Merkulova E A, Guiboileau A, Naya L, Masclaux-Daubresse C, Yoshimoto K. Assessment and optimization of autophagy monitoring methods in Arabidopsis roots indicate direct fusion of autophagosomes with vacuoles. Plant Cell Physiol, 2014, 55: 715-726.
doi: 10.1093/pcp/pcu041
[12] Lin W, Zhuang X. Using microscopy tools to visualize autophagosomal structures in plant cells. Methods Mol Biol, 2017, 1662: 257-266.
[13] Pu Y, Bassham D C. Detection of autophagy in plants by fluorescence microscopy. Methods Mol Biol, 2016, 1450: 161-172.
[14] Fan T, Yang W, Zeng X, Xu X, Xu Y, Fan X, Luo M, Tian C, Xia K, Zhang M. A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality. Front Plant Sci, 2020, 11: 588.
doi: 10.3389/fpls.2020.00588 pmid: 32582228
[15] 吴洪波, 刘刚, 张路路, 王冬梅. 小麦ATG8的原核表达及其抗血清制备. 华北农学报, 2013, 28(1): 101-105.
Wu H B, Liu G, Zhang L L, Wang D M. Cloning and prokaryotic expression of ATG8 (a molecular marker of autophagy) gene from wheat and preparation of antiserum. Acta Agric Boreali-Sin, 2013, 28(1): 101-105. (in Chinese with English abstract)
[16] Rappsilber J, Mann M, Ishihama Y. Protocol for micro- purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc, 2007, 2: 1896-1906.
doi: 10.1038/nprot.2007.261 pmid: 17703201
[17] Li Y B, Cui D Z, Sui X X, Huang C, Huang C Y, Fan Q Q, Chu X S. Autophagic survival precedes programmed cell death in wheat seedlings exposed to drought stress. Int J Mol Sci, 2019, 20: 5777.
doi: 10.3390/ijms20225777
[18] Martinet W, Roth L, De Meyer G R Y. Standard Immunohistochemical assays to assess autophagy in mammalian tissue. Cells, 2017, 6: 17.
doi: 10.3390/cells6030017
[19] Ktistakis N T. Monitoring the localization of MAP1LC3B by indirect immunofluorescence. Cold Spring Harb Protoc, 2015, 2015: 751-755.
doi: 10.1101/pdb.prot086264 pmid: 26240409
[20] Zhang Q, Wang D, Zhang H, Wang M, Li P, Fang X, Cai X. Detection of autophagy processes during the development of nonarticulated laticifers in Euphorbia kansui Liou. Planta, 2018, 247: 845-861.
doi: 10.1007/s00425-017-2835-0 pmid: 29260395
[21] Bao Y, Mugume Y, Bassham D C. Biochemical methods to monitor autophagic responses in plants. Methods Enzymol, 2017, 588: 497-513.
[22] 林静. 腐败梭菌毒素单抗、多抗的制备及DAS_ELISA方法的初步建立. 山东农业大学硕士毕业论文, 山东泰安, 2019.
Lin J. Preparation of Monoclonal Antibody and Multiple Antibody against Clostridium septicums Alpha Toxin and Preliminary Establishment of DAS-ELISA. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2019. (in Chinese with English abstract)
[23] 王传武, 赵德明. 用实验动物制备多克隆抗体: I. 免疫方案的优化. 实验动物科学与管理, 2002, 19(4): 40-44.
Wang C W, Zhao D M. Preparation of polyclonal antibody from experimental animals: I. Optimization of immololunization scheme. Lab Anim Sci Administr, 2002, 19(4): 40-44. (in Chinese with English abstract)
[24] 刘希, 李齐, 郁飞. 拟南芥自噬蛋白ATG8e的原核表达及多克隆抗体制备. 江苏农业科学, 2018, 46(18): 47-51.
Liu X, Li Q, Yu F. Prokaryotic expression and polyclonal antibody preparation of Arabidopsis autophagy protein ATG8e. Jiangsu Agric Sci, 2018, 46(18): 47-51. (in Chinese with English abstract)
[25] Hernandez-Garcia M S, Miranda-Ozuna J F T, Salazar-Villatoro L, Vazquez-Calzada C, Avila-Gonzalez L, Gonzalez-Robles A, Ortega-Lopez J, Arroyo R. Biogenesis of autophagosome in trichomonas vaginalis during macroautophagy induced by rapamycin-treatment and iron or glucose starvation conditions. J Eukaryot Microbiol, 2019, 66: 654-669.
doi: 10.1111/jeu.12712
[26] Bu F, Yang M, Guo X, Huang W, Chen L. Multiple functions of atg8 family proteins in plant autophagy. Front Cell Dev Biol, 2020, 8: 466.
doi: 10.3389/fcell.2020.00466
[27] 胡蕊洁, 杨向云, 贾磊, 李玉如, 项月, 岳洁瑜, 王华忠. 病毒介导的GFP-ATG8在小麦上的表达和在自噬活性监测上的应用. 作物学报, 2021, 47: 2371-2378.
doi: 10.3724/SP.J.1006.2021.01094
Hu X J, Yang X Y, Jia L, Li Y R, Xiang Y, Yue J Y, Wang H J. Virus-mediated expression of GFP-ATG8 for autophagy monitoring in wheat. Acta Agron Sin, 2021, 47: 2371-2378. (in Chinese with English abstract)
[28] Pottier M, Dumont J, Masclaux-Daubresse C, Thomine S. Autophagy is essential for optimal translocation of iron to seeds in Arabidopsis. J Exp Bot, 2019, 70: 859-869.
[29] Zhen X, Li X, Yu J, Xu F. OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice. Int J Mol Sci, 2019, 20: 4956.
doi: 10.3390/ijms20194956
[30] Sera Y, Hanamata S, Sakamoto S, Ono S, Kaneko K, Mitsui Y, Koyano T, Fujita N, Sasou A, Masumura T, Saji H, Nonomura K I, Mitsuda N, Mitsui T, Kurusu T, Kuchitsu K. Essential roles of autophagy in metabolic regulation in endosperm development during rice seed maturation. Sci Rep, 2019, 9: 18544.
[31] Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol, 2002, 129: 1181-1193.
pmid: 12114572
[32] Chung T, Suttangkakul A, Vierstra R D. The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol, 2009, 149: 220-234.
doi: 10.1104/pp.108.126714
[33] Maqbool A, Hughes R K, Dagdas Y F, Tregidgo N, Zess E, Belhaj K, Round A, Bozkurt T O, Kamoun S, Banfield M J. Structural basis of host autophagy-related protein 8 (ATG8) binding by the Irish potato famine pathogen effector protein PexRD54. J Biol Chem, 2016, 291: 20270-20282.
[34] Xia K, Liu T, Ou Y J, Wang R, Fan T, Zhang M. Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res, 2011, 18: 363-377.
doi: 10.1093/dnares/dsr024
[35] Zess E K, Jensen C, Cruz-Mireles N, De la Concepcion J C, Sklenar J, Stephani M, Imre R, Roitinger E, Hughes R, Belhaj K, Mechtler K, Menke F L H, Bozkurt T, Banfield M J, Kamoun S, Maqbool A, Dagdas Y F. N-terminal beta-strand underpins biochemical specialization of an ATG8 isoform. PLoS Biol, 2019, 17: e3000373.
[36] Pei D, Zhang W, Sun H, Wei X, Yue J, Wang H. Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses. Plant Cell Rep, 2014, 33: 1697-1710.
doi: 10.1007/s00299-014-1648-x
[37] Seo E, Woo J, Park E, Bertolani S J, Siegel J B, Choi D, Dinesh-Kumar S P. Comparative analyses of ubiquitin-like ATG8 and cysteine protease ATG4 autophagy genes in the plant lineage and cross-kingdom processing of ATG8 by ATG4. Autophagy, 2016, 12: 2054-2068.
doi: 10.1080/15548627.2016.1217373
[1] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[2] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[3] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[4] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[5] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[6] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[7] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[8] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[9] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[10] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[11] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[12] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[13] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[14] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[15] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!