欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2377-2389.doi: 10.3724/SP.J.1006.2022.12057

• 耕作栽培·生理生化 • 上一篇    下一篇

离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究

王权1(), 王乐乐1, 朱铁忠1, 任浩杰1, 王辉1, 陈婷婷1, 金萍1, 武立权1,2,*(), 杨茹1, 尤翠翠1, 柯健1, 何海兵1,*()   

  1. 1.安徽农业大学农学院, 安徽合肥 230036
    2.江苏省现代作物生产协同创新中心, 江苏南京 210095
  • 收稿日期:2021-08-17 接受日期:2022-01-05 出版日期:2022-09-12 网络出版日期:2022-07-15
  • 通讯作者: 武立权,何海兵
  • 作者简介:E-mail: 1715994244@qq.com
  • 基金资助:
    国家自然科学基金项目(32071946);国家自然科学基金项目(31801286);安徽省自然科学基金项目(1908085MC67);国家级大学生创新创业项目(S202010364129);安徽农业大学校级大创项目(202110364687);安徽农业大学校级大创项目(202110364345)

Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding

WANG Quan1(), WANG Le-Le1, ZHU Tie-Zhong1, REN Hao-Jie1, WANG Hui1, CHEN Ting-Ting1, JIN Ping1, WU LI-Quan1,2,*(), YANG Ru1, YOU Cui-Cui1, KE Jian1, HE Hai-Bing1,*()   

  1. 1. College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
    2. Jiangsu Collaborative Center for Modern Crop Production, Nanjing 210095, Jiangsu, China
  • Received:2021-08-17 Accepted:2022-01-05 Published:2022-09-12 Published online:2022-07-15
  • Contact: WU LI-Quan,HE Hai-Bing
  • Supported by:
    National Natural Science Foundation of China(32071946);National Natural Science Foundation of China(31801286);Natural Science Foundation of Anhui Province(1908085MC67);National Student Innovation and Entrepreneurship Project(S202010364129);University-level Large Innovation Project of Anhui Agricultural University(202110364687);University-level Large Innovation Project of Anhui Agricultural University(202110364345)

摘要:

HgCl2作为水通道蛋白专用抑制剂, 可有效量化水通道蛋白和叶片结构对光合作用的贡献度, 对认识提高作物光合作用的潜在途径具有重要意义。然而, 有关抑制叶片水通道蛋白的HgCl2浓度和时长尚不清楚。本研究以水稻品种Y两优900和徽两优898为试材, 采用HgCl2溶液离体饲养水稻叶片(叶龄余数为2), 设置不同处理浓度: 0、100、200、300和500 µmol L-1及不同处理时间: 0、0.5、1、1.5、2、2.5、3、3.5、4和4.5 h。研究表明, 不同浓度和处理时长对叶片相对含水量无显著影响(P>0.05)。随着浓度增加, 叶片SPAD值、净光合速率和气孔导度呈明显降低趋势。与对照相比, 浓度为100 µmol L-1时长2 h时的净光合速率降低至最低值(62.33%), 随着处理时间延长, 光合速率趋于稳定。当浓度>100 µmol L-1时, 随着处理时长增加, 净光合速率持续降低, 且超氧化物歧化酶(SOD)和过氧化物酶(POD)活性及丙二醛(MDA)含量均显著增加(P<0.05), 表明浓度>100 µmol L-1, 处理时间较长时, HgCl2溶液能对叶片活体造成伤害。与活体测量相比, 叶片净光合速率离体稳定数值降幅约15%~20%, 因而离体叶片测量光合速率乘以1.25~1.33的矫正系数, 可能较准确反映水稻叶片活体原位测定的光合指标。此外, 100 µmol L-1 HgCl2显著降低水稻叶片水通道蛋白基因表达。这些结果表明, HgCl2高效安全抑制水稻水通道蛋白的最佳组合为100 µmol L-1下饲养2 h。

关键词: 水稻, HgCl2, 离体饲养, 光合作用, 抗氧化酶活性

Abstract:

As a special inhibitor of aquaporin, HgCl2 can effectively quantify the contribution of aquaporin and leaf structure to photosynthesis, which is of great significance for understanding the potential ways to improve crop photosynthesis. However, the concentration and duration of HgCl2 inhibiting aquaporin in leaves are still unclear. In this study, rice varieties Y liangyou 900 and Huiliangyou 898 were used as materials to feed rice leaves in vitro with HgCl2 solution (the remainder of leaf age was 2), and different treatment concentrations (0, 100, 200, 300, and 500 µmol L-1), and different treatment times (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 h) were set. The results showed that different concentrations and treatment times had no significant effect on the relative water content of leaves (P > 0.05). With the increase of concentration, the SPAD value, net photosynthetic rate, and stomatal conductance of leaves decreased obviously. Compared with the control, the net photosynthetic rate decreased to the lowest value (62.33%) when the concentration was 100 µmol L-1 for 2 h, and the net photosynthetic rate tended to be stable with the extension of treatment time. When the concentration was less than 100 µmol L-1, the net photosynthetic rate decreased continuously with the increase of treatment time, and the activities of superoxide dismutase (SOD), peroxidase (POD), and malondialdehyde content increased significantly (P < 0.05), indicating that HgCl2 solution could damage the living leaves when the concentration was less than 100 µmol L-1 and the treatment time was longer. Compared with in vivo measurement, the steady value of net photosynthetic rate of leaves in vitro decreased by about 15%-20%, so the correction coefficient of measured net photosynthetic rate of leaves in vitro multiplied by 1.25-1.33 might accurately reflect the photosynthetic index of rice leaves in vivo measurement. In addition, 100 µmol L-1 HgCl2 significantly reduced the expression of aquaporin gene in rice leaves. Therefore, the optimal combination of HgCl2 to effectively and safely inhibit aquaporin in rice was 100 µmol L-1 for 2 h.

Key words: rice, HgCl2, in vitro feeding, photosynthesis, antioxidant enzyme activity

图1

HgCl2离体饲养处理及水稻叶片光合气体交换参数获取"

表1

水稻水通道蛋白基因(OsPIPs)名称及引物序列"

基因序列号
Gene ID
引物名称
Primer name
序列
Sequence (5'-3')
Os02g0666200 OsPIP1-1F TGAGATTGTTGGCACCTTCA
OsPIP1-1R AGTGGGGCAAGGATAGGAAC
Os04g0559700 OsPIP1-2F ACCAGGGCCCTCTTCTACAT
OsPIP1-2R GTCTCGTACAGGCCCTTCTG
Os02g0629200 OsPIP2-2F CTGACCAAGTGGTCGCTGTA
OsPIP2-2R GTAGGACCCGAGCTTGTACC
Os04g0521100 OsPIP2-3F CGGTGTTCATGGTTCACTTG
OsPIP2-3R TGCCTTGTGCTGGTTGTAGA
Os07g0448100 OsPIP2-4F GCCGTGGTCTACAACAACAA
OsPIP2-4R GGATGACCTGGTGGTACAGC
Os03g0861300 OsPIP2-8F CACCGTGATCGGTGAGAAG
OsPIP2-8R GCAGTACACCAGCACGAAGA
Os03g0381200 β-Actin F AAGAAGGAGCAGCGCATTAC
β-Actin R CCTGATTGATCCCGACAAGT

图2

不同浓度HgCl2溶液下水稻叶片相对净光合速率和相对气孔导度随离体饲养时长的变化 C0~C4: HgCl2溶液浓度(0、100、200、300和500 µmol L-1); T0~T9: 离体饲养时长(0、0.5、1、1.5、2、2.5、3、3.5、4和4.5 h)。"

表2

不同HgCl2浓度下YLY 900和HLY 898 Fv/Fm随离体饲养时长的变化"

品种
Variety
离体饲养时长
Feeding times
in vitro
HgCl2浓度 HgCl2 concentration (µmol L-1)
C0 C1 C2 C3 C4
Y两优900
YLY900
T0 0.840±0.002 0.839±0.003 0.840±0.002 0.837±0.003 0.839±0.003
T1 0.838±0.006 0.836±0.004 0.838±0.005 0.838±0.003 0.838±0.002
T2 0.837±0.004 0.836±0.004 0.836±0.004 0.834±0.010 0.838±0.002
T3 0.837±0.004 0.839±0.007 0.836±0.006 0.832±0.011 0.836±0.004
T4 0.839±0.001 0.836±0.001 0.837±0.003 0.834±0.007 0.836±0.003
T5 0.838±0.004 0.835±0.002 0.839±0.003 0.835±0.007 0.834±0.006
T6 0.837±0.004 0.836±0.002 0.838±0.002 0.837±0.002 0.838±0.003
T7 0.838±0.003 0.836±0.002 0.836±0.004 0.835±0.004 0.836±0.003
T8 0.833±0.005 0.833±0.002 0.838±0.002 0.836±0.004 0.836±0.003
T9 0.837±0.003 0.837±0.003 0.838±0.003 0.837±0.004 0.837±0.005
品种
Variety
离体饲养时长
Feeding times
in vitro
HgCl2浓度 HgCl2 concentration (µmol L-1)
C0 C1 C2 C3 C4
徽两优898
HLY898
T0 0.840±0.007 0.839±0.002 0.841±0.005 0.842±0.005 0.842±0.002
T1 0.835±0.004 0.836±0.002 0.835±0.005 0.841±0.002 0.840±0.003
T2 0.834±0.002 0.833±0.002 0.835±0.004 0.839±0.001 0.833±0.016
T3 0.834±0.001 0.835±0.004 0.834±0.003 0.838±0.007 0.839±0.002
T4 0.835±0.003 0.840±0.004 0.834±0.010 0.842±0.002 0.839±0.003
T5 0.836±0.002 0.837±0.004 0.836±0.007 0.839±0.005 0.838±0.003
T6 0.837±0.003 0.836±0.004 0.839±0.004 0.841±0.002 0.838±0.005
T7 0.839±0.001 0.838±0.004 0.834±0.005 0.839±0.001 0.841±0.005
T8 0.837±0.004 0.839±0.003 0.836±0.003 0.838±0.004 0.840±0.003
T9 0.838±0.004 0.835±0.004 0.840±0.001 0.838±0.003 0.839±0.004

图3

两品种水稻相对气孔导度与相对净光合速率之间的相关性 浓度和时间处理同图2。"

图4

不同浓度HgCl2溶液下叶片相对含水量随离体处理时长的变化 浓度和时间处理同图2, 且柱上同一浓度不同小写字母表示在0.05水平上差异显著。"

图5

不同浓度HgCl2溶液下叶片SPAD值随离体饲养时长的变化 浓度和时间处理同图2, 且柱上同一浓度不同小写字母表示在0.05水平上差异显著。"

图6

不同浓度HgCl2溶液下YLY900水稻叶片表型随离体饲养时长(0 h和3 h)的变化 浓度处理同图2。"

表3

不同浓度HgCl2溶液下水稻SOD活性随离体饲养时长的变化"

HgCl2溶液浓度
Concentration of HgCl2 solutions (µmol L-1)
SOD活性 SOD activity (U g-1)
T0 T2 T4 T6
C0 259.90±0.72 a 269.55±1.32 b 275.30±3.50 c 273.52±6.91 b
C1 259.50±0.76 a 273.91±2.43 ab 280.68±3.41 c 283.99±3.23 b
C2 259.78±2.51 a 278.86±3.07 a 322.16±2.95 a 292.84±5.24 a
C3 260.35±1.89 a 277.83±2.31 a 301.16±2.72 b 288.35±4.37 a
C4 260.11±0.89 a 255.03±4.05 c 242.87±2.85 d 229.94±2.49 c

表4

不同浓度HgCl2溶液下水稻POD活性随离体饲养时长的变化"

HgCl2溶液浓度
Concentration of HgCl2 solutions (µmol L-1)
POD活性 POD activity (U g-1)
T0 T2 T4 T6
C0 165.52±2.67 a 173.14±1.35 e 179.22±1.46 e 182.65±1.19 e
C1 165.77±1.03 a 187.17±1.90 d 193.95±1.58 d 208.99±1.00 d
C2 166.00±0.23 a 199.40±0.79 c 227.29±0.70 c 237.39±1.96 c
C3 165.85±0.99 a 233.69±1.34 b 253.82±1.83 b 258.93±1.24 b
C4 165.52±0.63 a 264.12±2.31 a 271.80±0.62 a 278.88±1.31 a

表5

不同浓度HgCl2溶液下水稻MDA含量随离体饲养时长的变化"

HgCl2溶液浓度
Concentration of HgCl2 solutions (µmol L-1)
MDA含量 MDA content (nmol g-1)
T0 T2 T4 T6
C0 15.64±0.34 a 17.01±0.25 d 18.36±0.45 e 20.74±0.43 c
C1 16.32±0.82 a 17.78±0.19 d 19.54±0.15 d 22.33±0.50 d
C2 16.29±0.32 a 25.80±0.20 c 28.22±0.67 c 31.27±0.26 c
C3 15.94±0.87 a 31.21±0.75 b 33.88±0.75 b 35.22±0.62 b
C4 16.08±0.53 a 42.28±0.64 a 45.19±0.56 a 47.40±0.43 a

图7

不同浓度HgCl2溶液下水稻质膜水通道蛋白基因相对表达随离体饲养时长的变化 浓度和时间处理同图2, 柱上同一离体饲养时长不同小写字母表示在0.05水平上差异显著。"

[1] Harley P C, Loreto F, Di Marco G, Sharkey T D. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol, 1992, 98: 1429-1436.
doi: 10.1104/pp.98.4.1429 pmid: 16668811
[2] Yang K, Yang J R, Lv C H, Cao P P, Deng X, Wang Y J, Sun W J, Yu L F. Hu Z H, Huang Y. Reduced mesophyll conductance induces photosynthetic acclimation of japonica rice under elevated CO2. Environ Exp Bot, 2021, 190: 104590.
[3] Chen X, Ma J, Wang X, Lu K, Liu Y, Zhang L, Peng J, Chen L, Yang M, Li Y, Cheng Z, Xiao S, Yu J, Zou S, Liang Y, Zhang M, Yang Y, Ding X, Dong H. Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice. Plant J, 2021, 108: 330-346.
doi: 10.1111/tpj.15427
[4] Johannes K, Katarzyna G, Long S P. Photosynthetic efficiency and mesophyll conductance are unaffected in Arabidopsis thaliana aquaporin knock-out lines. J Exp Bot, 2020, 71: 318-329.
doi: 10.1093/jxb/erz442 pmid: 31731291
[5] Hachez C, Milhiet T, Heinen R B, Chaumont F. Roles of Aquaporins in stomata. In: Chaumont F, Tyerman S, eds. Plant Aquaporins: from Transport to Signaling. Switzerland: Springer International Publishing, 2017. pp 167-183.
[6] Hanba Y T, Mineo S, Yasuyuki H, Takahiko H, Kunihiro K, Ichiro T, Maki K. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol, 2004, 45: 671-681.
[7] 韩吉梅, 张旺锋, 熊栋梁, Jaume F, 张亚黎. 植物光合作用叶肉导度及主要限制因素研究进展. 植物生态学报, 2017, 41: 914-924.
doi: 10.17521/cjpe.2016.0337
Han J M, Zhang W F, Xiong D L, Jaume F, Zhang Y L. Mesophyll conductance and its limiting factors in plant leaves. Chin J Plant Ecol, 2017, 41: 914-924 (in Chinese with English abstract).
doi: 10.17521/cjpe.2016.0337
[8] 李勇, 彭少兵, 黄见良, 熊栋梁, 刘茜. 叶肉导度的组成、大小及其对环境因素的响应. 植物生理学报, 2013, 49: 1143-1154.
Li Y, Peng S B, Huang J L, Xiong D L, Liu X. Components and magnitude of mesophyll conductance and its responses to environmental variations. Plant Physiol J, 2013, 49: 1143-1154. (in Chinese with English abstract)
[9] 胡挺帅, 郑梦琪, 郑嘉琪, 罗心怡, 张志友, 潘伟槐, 郭天荣, 莫亿伟. 高温和HgCl2复合处理对水稻花期生理特性和水通道蛋白基因表达的影响. 湖南农业大学学报(自然科学版), 2020, 46(3): 262-270.
Hu T S, Zheng M Q, Zheng J Q, Luo X Y, Zhang Z Y, Pan W H, Guo T R, Mo Y W. Effect of high temperature and HgCl2 stress on physiological parameters and aquaporins genes expression in rice flowering stage. J Hunan Agric Univ (Nat Sci Edn), 2020, 46(3): 262-270. (in Chinese with English abstract)
[10] 何俊瑜, 任艳芳. 镉胁迫对莴苣幼苗生长和光合性能的影响. 西南农业学报, 2009, 22: 922-926.
He J Y, Ren Y F. Effects of cadmium on seedling growth and photosynthesis characteristics of Lettuce (Lactuca sativa L.). Southwest China J Agric Sci, 2009, 22: 922-926. (in Chinese with English abstract)
[11] 张顺泉, 陈培玉. 应用水稻叶色诊断追氮技术的探讨. 浙江农业科学, 1994, (2): 77-78.
Zhang S Q, Chen P Y. Application of leaf color diagnosis and nitrogen topdressing technology in rice. J Zhejiang Agric Sci, 1994, (2): 77-78. (in Chinese)
[12] 胡皓, 江华. 水通道蛋白抑制剂和分子靶向治疗的研究进展. 第二军医大学学报, 2018, 39: 775-779.
Hu H, Jiang H. Advances in aquaporin inhibitors and molecular targeted therapy. Acad J Sec Mil Med Univ, 2018, 39: 775-779. (in Chinese with English abstract)
[13] 张亚坤, 宋鹏, 潘大宇, 王文森, 周亚男, 王成, 罗斌. Cu2+胁迫对大豆生长和抗氧化酶活性的影响. 江苏农业科学, 2019, 47(12): 97-100.
Zhang Y K, Song P, Pan D Y, Wang W S, Zhou Y N, Wang C, Luo B. Effects of Cu2+ Stress on growth and antioxidant enzyme activities of soybean. J Jiangsu Agric Sci, 2019, 47(12): 97-100. (in Chinese)
[14] 杨爽, 袁晓娜, 王中轩, 祝璞, 贾桂霞. HgCl2胁迫对东方百合叶烧指数和水分利用效率的影响. 北京林业大学学报, 2016, 38(5): 114-119.
Yang S, Yuan X N, Wang Z X, Zhu P, Jia G X. Effects of HgCl2 stress on the upper leaf necroses and water use efficiency of oriental hybrid lilies. J Beijing For Univ, 2016, 38(5): 114-119. (in Chinese with English abstract)
[15] 聂胜委, 黄绍敏, 张水清, 张巧萍, 郭斗斗. 重金属胁迫后效对玉米产量的影响. 华北农学报, 2013, 28(4): 123-129.
Nie S W, Huang S M, Zhang S Q, Zhang Q P, Guo D D. Later effects of various heavy metal stress on maize grain yields in wheat-maize rotation systems. Acta Agric Boreali-Sin, 2013, 28(4): 123-129. (in Chinese with English abstract)
[16] 高大翔, 郝建朝, 李子芳, 马勇, 刘惠芬. 汞胁迫对水稻生长及幼苗生理生化的影响. 农业环境科学学报, 2008, 27(1): 58-61.
Gao D X, Hao J C, Li Z F, Ma Y, Liu H F. Effects of Hg stress on growth and physiological and biochemical characteristics of rice seedlings. J Agro-Environ Sci, 2008, 27(1): 58-61. (in Chinese with English abstract)
[17] 赵鸿彬, 张正斌, 徐萍, 曹红星. HgCl2胁迫对小麦幼苗水分利用效率和叶绿素含量的影响. 西北植物学报, 2007, 27: 2478-2483.
Zhao H B, Zhang Z B, Xu P, Cao H X. Water use efficiency and chlorophyll content of wheat seedling under the inhibition of HgCl2. Acta Bot Boreali-Occident Sin, 2007, 27: 2478-2483. (in Chinese with English abstract)
[18] 詹嘉红, 蓝宗辉. 汞对水稻幼苗部分生理生化指标的影响. 生物技术, 2007, 17(3): 76-77.
Zhan J H, Lan Z H. Effects of mercury on some of physiological indicators of rice seedlings. Biotechnology, 2007, 17(3): 76-77. (in Chinese with English abstract)
[19] 刘元香. 汞对水稻幼苗生长的影响及水稻基因OsPP2C与其耐汞性. 浙江师范大学硕士学位论文, 浙江金华, 2016.
Liu Y X. Effects of Mercury on the Growth of Rice Seedlings and Relationship of OsPP2C Gene to Mercury Tolerance. MS Thesis of Chinese Academy of Zhejiang Normal University, Jinhua, Zhejiang, China, 2016. (in Chinese with English abstract)
[20] 张联合, 赵巍, 郁飞燕, 李友军, 苗艳芳. 水稻离体叶片吸收亚硒酸盐的生理特性. 土壤学报, 2012, 49(1): 189-193.
Zhang L H, Zhao W, Yu F Y, Li Y J, Miao Y F. Physiological characteristics of selenite uptake by excised leaves of rice. Acta Pedol Sin, 2012, 49(1): 189-193 (in Chinese with English abstract).
[21] Chou D H S, Sinclair T R, Messina C D, Cai W, Warner D, Cooper M. Inhibitor screen for limited-transpiration trait among maize hybrids. Environ Exp Bot, 2015, 109: 161-167.
doi: 10.1016/j.envexpbot.2014.07.015
[22] 赵亚波, 李培纲, 陈泽恺, 潘伟槐, 莫亿伟. 花期前后稻穗水分含量与水通道蛋白基因家族表达关系研究. 华北农学报, 2016, 31(2): 38-44.
Zhao Y B, Li P G, Chen Z K, Pan W H, Mo Y W. Variation of relative water content and expression of aquaporins genes in rice panicle during before and after flowering. Acta Agric Boreali-Sin, 2016, 31(2): 38-44. (in Chinese with English abstract)
[23] 黄影华, 张华杰, 陈秋玉, 周丽燕, 赵丽君, 王睿哲, 夏丽莎, 付璐, 李艳大, 陈青春. 不同生育期水稻叶片SPAD值与产量相关性研究. 仲恺农业工程学院学报, 2021, 34(1): 1-7.
Huang Y H, Zhang H J, Chen Q Y, Zhou L Y, Zhao L J, Wang R Z, Xia L S, Fu L, Li Y D, Chen Q C. Correlation between SPAD values of rice leaf and yield among different growth stages. J Zhongkai Univ Agric Eng, 2021, 34(1): 1-7. (in Chinese with English abstract)
[24] 李陈贞, 孙亚莉, 刘红梅, 徐庆国. 镉胁迫下不同水稻品种幼苗生长及光合性能的差异. 湖南农业大学学报(自然科学版), 2021, 47(2): 147-152.
Li C Z, Sun Y L, Liu H M, Xu Q G. The difference of seedling growth and photosynthetic performance of different rice varieties under cadmium stress. J Hunan Agric Univ (Nat Sci Edn), 2021, 47(2): 147-152. (in Chinese with English abstract)
[25] 童建华. 铅胁迫对水稻生理生化特性的影响研究. 湖南农业大学硕士学位论文, 湖南长沙, 2008.
Tong J H. Study on Effect of Lead Stress on Growth of Rice. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2008. (in Chinese with English abstract)
[26] 杜建雄, 李剑峰, 张淑卿, 袁涓文, 吕世勇. 汞胁迫对4个草坪草品种幼苗生理特性及养分积累的影响. 西南农业学报, 2019, 32: 1767-1772.
Du J X, Li J F, Zhang S Q, Yuan J W, Lyu S Y. Effects of Hg2+ stress on physiological characteristics and nutrient accumulation of four turfgrass varieties at seedling stage. Southwest China J Agric Sci, 2019, 32: 1767-1772 (in Chinese with English abstract).
[27] 严涵, 方鑫, 朱贤豪, 刘星宇, 洪阳, 刘骏, 姚鹏程. 锌、锰单一及复合胁迫对水稻幼苗生理生化特性的影响. 浙江农业科学, 2019, 60(2): 67-70.
Yan H, Fang X, Zhu X H, Liu X Y, Hong Y, Liu J, Yao P C. Effects of single and combined stress of zinc and manganese on physiological and biochemical characteristics of rice seedlings. J Zhejiang Agric Sci, 2019, 60(2): 67-70. (in Chinese with English abstract)
[28] 杨雯一. 不同胁迫对各种植物体内抗氧化酶系统的影响综述. 化工管理, 2021, (1): 92-93.
Yang W Y. A review of the effects of different stresses on antioxidant enzyme systems in various plants. Chem Enterp Manage, 2021, (1): 92-93. (in Chinese with English abstract)
[29] 吕冬梅, 朱广龙, 王玥, 施雨, 卢发光, 任桢, 刘昱茜, 顾立峰, 卢海潼, Ahmad I, 焦秀荣, 孟天瑶, 周桂生. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应. 作物学报, 2021, 47: 728-737.
doi: 10.3724/SP.J.1006.2021.04146
Lyu D M, Zhu G L, Wang Y, Shi Y, Lu F G, Ren Z, Liu Y Q, Gu L F, Lu H T, Ahmad I, Jiao X R, Meng T Y, Zhou G S. Growth, physiological, and heavy metal accumulation traits at seedling stage under heavy metal stress in castor (Ricinus communis L.). Acta Agron Sin, 2021, 47: 728-737 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04146
[30] 彭舒, 黄真池, 欧阳乐军, 柯柳颜, 陈信波, 曾富华. 铜,镉,汞对水稻幼苗抗氧化酶活性的影响. 湛江师范学院学报, 2012, 3(3): 79-86.
Peng S, Huang Z C, Ou-yang L J, Ke L Y, Chen X B, Zeng F H. Effects of copper, cadmium and mercury on antioxidant enzyme activities of rice seedlings. J Zhanjiang Norm Univ, 2012, 3(3): 79-86. (in Chinese)
[31] 王娟娟. 水稻抗氧化酶活性对Cd胁迫的应答及其对Cd吸收的影响. 安徽农学通报, 2016, 22(16): 21-24.
Wang J J. Responses of antioxidant enzyme activities to cadmium and its impact on Cd uptake by rice (Oryza sativa). Anhui Agric Sci Bull, 2016, 22(16): 21-24. (in Chinese with English abstract)
[32] 周振翔, 李志康, 戴琪星, 孔祥胜, 王志琴, 顾骏飞. 水稻光合生理限制因素及改善途径研究. 中国稻米, 2015, 21(4): 25-32.
doi: 10.3969/j.issn.1006-8082.2015.04.005
Zhou Z X, Li Z K, Dai Q X, Kong X S, Wang Z Q, Gu J F. Study on the limiting factors of photosynthetic physiology of rice and improvement methods. China Rice, 2015, 21(4): 25-32. (in Chinese with English abstract)
[33] He H B, Wang Q, Wang L L, Yang K, Yang R, You C C, Ke J, Wu L Q. Photosynthetic physiological response of water-saving and drought-resistant rice to severe drought under wetting-drying alternation irrigation. Physiol Plant, 2021, 173: 2191-2206.
doi: 10.1111/ppl.13568
[34] 张秀娟, 吴楚, 孙海龙. 水曲柳幼苗叶片中水孔蛋白与光合作用的关系. 长江大学学报(自然科学版), 2006, 3(3): 158-162.
Zhang X J, Wu C, Sun H L. Relationship between hydropore proteins and photosynthesis in leaves of water hyacinth seedlings. J Yangtze Univ (Nat Sci Edn), 2006, 3(3): 158-162. (in Chinese)
[35] 庞永奇, 王高奇, 王旭初, 陈珈, 王学臣. 植物水孔蛋白的亚细胞分布与生理功能研究浅析. 生物化学与生物物理进展, 2012, 39: 962-971.
Pang Y Q, Wang G Q, Wang X C, Chen J, Wang X C. Subcellular distribution and physiological function of plant aquaporin. Prog Biochem Biophys, 2012, 39: 962-971. (in Chinese with English abstract)
doi: 10.3724/SP.J.1206.2011.00617
[36] Sun J Y, Liu X S, Khan I U, Wu X C, Yang Z M. OsPIP2;3 as an aquaporin contributes to rice resistance to water deficit but not to salt stress. Environ Exp Bot, 2021, 183: 104342.
[37] Ding L, Uehlein N, Kaldenhoff R, Guo S W, Zhu Y Y. Aquaporin PIP2;1 affects water transport and root growth in rice (Oryza sativa L.). Plant Physiol Biochem, 2019, 139: 152-160.
doi: 10.1016/j.plaphy.2019.03.017
[38] Kaldenhoff R, Kai L, Uehlein N. Aquaporins and membrane diffusion of CO2 in living organisms. Plant Cell Physiol, 2014, 1840: 1592-1595.
[39] 蒋可人, 马峥, 郑航, 刘小军. 转录组与蛋白质组整合分析在生物学研究中的应用. 生物技术通报, 2018, 34(12): 50-55.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0929
Jiang K R, Ma Z, Zheng H, Liu X J. Review on the application of integrated transcriptome and proteome analysis in biology. Biotech Bull, 2018, 34(12): 50-55. (in Chinese with English abstract)
[40] Guo L, Wang Z Y, Lin H, Cui W E, Chen J, Liu M, Chen Z L, Qu L J, Gu H. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res, 2006, 16: 277-286.
doi: 10.1038/sj.cr.7310035
[41] 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响. 植物生态学报, 2020, 44: 677-686.
doi: 10.17521/cjpe.2020.0058
Liu L Y, Feng J X, Liu W X, Wan X C. Effects of drought stress on photosynthesis, growth and root structure of transgenic PtPIP2;8 poplar 84K (Populus alba × P. glandulosa). Chin J Plant Ecol, 2020, 44: 677-686 (in Chinese with English abstract).
doi: 10.17521/cjpe.2020.0058
[42] Guo P, Du H X, Wang D Y, Ma M. Effects of mercury stress on methylmercury production in rice rhizosphere, methylmercury uptake in rice and physiological changes of leaves. Sci Total Environ, 2020, 765: 142682.
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[4] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[5] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[6] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[7] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[8] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[9] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[10] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[11] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[12] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[13] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[14] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[15] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!