作物学报 ›› 2022, Vol. 48 ›› Issue (3): 565-571.doi: 10.3724/SP.J.1006.2022.14011
杜浩1(), 程玉汉2, 李泰1, 侯智红1, 黎永力1, 南海洋1, 董利东1, 刘宝辉1, 程群1,*()
DU Hao1(), CHENG Yu-Han2, LI Tai1, HOU Zhi-Hong1, LI Yong-Li1, NAN Hai-Yang1, DONG Li-Dong1, LIU Bao-Hui1, CHENG Qun1,*()
摘要:
分子设计育种是将分子遗传学与传统育种相结合, 并培育成具有优良性状的新品种的重要方法之一, 尽管该方法很大程度上能够缩短育种进程, 但在实际育种过程中却应用较少。在大豆的育种过程中, 提高产量是主要的育种目标之一, 其中, 每荚粒数是决定大豆单株产量的关键性状之一。在大豆中, 每荚粒数与叶片形状呈正相关, 由一对等位基因Ln/ln控制, 宽叶的大豆品种一般为Ln, 窄叶的大豆品种一般为突变型ln, 且ln伴随着更多的四粒荚。尽管Ln对于大豆单产的提高, 具有潜在的重要作用, 但将该位点应用于分子设计育种中, 报道较少。本研究通过分析483份来自不同纬度大豆品种的Ln基因型发现, 高纬度地区大豆品种一般为ln, 而低纬度地区大豆品种一般为Ln。通过调查来自不同纬度的8个大豆品种的叶型和一粒荚至四粒荚个数发现, 低纬度大豆品种均为圆叶品种, 且几乎没有四粒荚。为将ln应用于低纬度地区大豆育种中, 成功开发了Ln的分子标记, 并通过连续回交的方法, 将ln代换到圆叶型品种Willams 82和华夏3号中, 获得了四粒荚较多的大豆新材料。本研究利用大豆分子设计育种的手段, 提高了大豆单株产量, 为加快大豆高产育种进程提供了重要的理论及实践基础。
[1] |
Ashraf M, Foolad R. Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed, 2013, 132:10-20.
doi: 10.1111/pbr.2013.132.issue-1 |
[2] | Sharma S, Sharma A. Molecular markers based plant breeding. Adv Res, 2018, 16:2348. |
[3] |
Hartung R C, Specht J E, Williams J H. Modification of soybean plant architecture by genes for stem growth habit and maturity. Crop Sci, 1981, 21:51-62.
doi: 10.2135/cropsci1981.0011183X002100010015x |
[4] | 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪. 大豆分子设计育种成果与展望. 中国科学院院刊, 2018, 33:915-922. |
Tian Z X, Liu B H, Yang Y P, Li M, Yao Y, Ren X B, Xue Y B. Update and prospect of soybean molecular module-based designer breeding in China. Bull Chin Acad Sci, 2018, 33:915-922 (in Chinese with English abstract). | |
[5] |
Cheng Q, Dong L D, Su T, Li T Y, Gan Z R, Nan H Y, Lu S J, Fang C, Kong L P, Li H Y, Hou Z H, Kou K, Tang Y, Lin X Y, Zhao X H, Chen L Y, Liu B H, Kong F J. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19:562.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439 |
[6] |
Chen L Y, Nan H Y, Kong L P, Yue L, Yang H, Zhao Q S, Fang C, Li H Y, Cheng Q, Lu S J, Kong F J, Liu B H, Dong L D. Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol, 2020, 62:1868-1879.
doi: 10.1111/jipb.v62.12 |
[7] |
Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112:1164-1171.
doi: 10.1007/s00122-006-0218-1 |
[8] |
Lu S J, Dong L D, Fang C, Liu S L, Kong L P, Cheng Q, Chen L Y, Su T, Nan H Y, Zhang D, Zhang L, Wang Z J, Yang Y Q, Yu D Y, Liu X L, Yang Q Y, Lin X Y, Tang Y, Zhao X H, Yang X Q, Tian C E, Xie Q G, Li X, Yuan X H, Tian Z X, Liu B H, Weller J L, Kong F J. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet, 2020, 52:428-436.
doi: 10.1038/s41588-020-0604-7 |
[9] |
Kong F J, Liu B H, Xia Z J, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154:1220-1231.
doi: 10.1104/pp.110.160796 |
[10] |
Li Z B, Cheng Q, Gan Z R, Hou Z H, Zhang Y H, Li Y L, Li H Y, Nan H Y, Yang C, Chen L N, Lu S J, Shi W Q, Chen L Y, Wang Y P, Fang C, Kong L P, Su T, Li S C, Kou K, Wang L S, Kong F J, Liu B H, Dong L D. Multiplex CRISPR/Cas9-mediated knockout of soybean LNK2 advances flowering time. Crop J, 2021, 9:767-776.
doi: 10.1016/j.cj.2020.09.005 |
[11] |
Li M W, Liu W, Lam H M, Gendron J M. PRR3 genes during soybean domestication PRR3 genes during soybean domestication. Plant Cell Physiol, 2019, 60:407-420.
doi: 10.1093/pcp/pcy215 |
[12] |
Cheng Q, Gan Z R, Wang Y P, Lu S J, Hou Z H, Li H Y, Xiang H T, Liu B H, Kong F J, Dong L D. J contributes to salt stress tolerance by up-regulating salt-responsive genes J contributes to salt stress tolerance by up-regulating salt-responsive genes. Front Plant Sci, 2020, 11:272.
doi: 10.3389/fpls.2020.00272 pmid: 32256507 |
[13] |
Hymowitz T. On the domestication of the soybean. Econ Bot, 1970, 24:408-421.
doi: 10.1007/BF02860745 |
[14] |
Lee G A, Crawford G W, Liu L, Sasaki Y, Chen X. Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS One, 2011, 6:e26720.
doi: 10.1371/journal.pone.0026720 |
[15] |
Fang C, Li W Y, Li G Q, Wang Z, Zhou Z K, Ma Y M, Shen Y I, Li C C, Wu Y H, Zhu B G, Yang W C, Tian Z X. Ln gene through combined approach of map-based cloning and association study in soybean Ln gene through combined approach of map-based cloning and association study in soybean. J Genet Genomics, 2013, 40:93-96.
doi: 10.1016/j.jgg.2013.01.002 |
[16] |
Jeong N, Moon J J, Kim H S, Kim C G, Jeong S C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet, 2011, 122:865-874.
doi: 10.1007/s00122-010-1492-5 |
[17] |
Jeong N, Suh S J, Kim M H, Lee S, Moon J K, Kim H S, Jeong S C. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell, 2012, 24:4807-4818.
doi: 10.1105/tpc.112.104968 |
[18] |
Sayama T, Tanabata T, Saruta M, Yamada T, Anai T, Kaga A, Ishimoto M. Ln gene in induced soybean mutants Ln gene in induced soybean mutants. Breed Sci, 2017, 67:363-369.
doi: 10.1270/jsbbs.16201 |
[19] |
Ohno C K, Reddy G V, Heisler M G, Meyerowitz E M. Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development, 2004, 131:1111-1122.
doi: 10.1242/dev.00991 |
[20] | Neumaier N, James A T. Exploiting the long-juvenile trait to improve adaptation of soybeans to the tropics. Food Legume Newsl, 1993, 8:12-14. |
[21] |
Spehar C R. Impact of strategic genes in soybean on agricultural development in the Brazilian tropical savannah. Field Crops Res, 1995, 41:141-146.
doi: 10.1016/0378-4290(95)00007-D |
[22] |
Fang C, Ma Y M, Wu S W, Liu Z, Wang Z, Yang R, Hu G H, Zhou Z K, Yu H, Zhang M, Pan Y, Zhou G A, Ren H X, Du W G, Yan H R, Wang Y P, Han D Z, Shen Y T, Liu S L, Liu T F, Zhang J X, Qin H, Yuan J, Yuan X H, Kong F J, Liu B H, Li J Y, Zhang Z W, Wang G D, Zhu B G, Tian Z X. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18:161-175.
doi: 10.1186/s13059-017-1289-9 |
[23] |
Wu F Q, Kang X H, Wang M L, Haider W, Price W B, Hajek B, Hanzawa Y. GmCOL1 feed-forward loop and its roles in photoperiodic flowering of soybean GmCOL1 feed-forward loop and its roles in photoperiodic flowering of soybean. Front Plant Sci, 2019, 10:1221.
doi: 10.3389/fpls.2019.01221 |
[24] |
Zhao X H, Cao D, Huang Z J, Wang J L, Lu S J, Xu Y, Liu B H, Kong F J, Yuan X H. Dual functions of GmTOE4a in the regulation of photoperiod-mediated flowering and plant morphology in soybean. Plant Mol Biol, 2015, 88:343-355.
doi: 10.1007/s11103-015-0322-1 |
[1] | 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299. |
[2] | 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338. |
[3] | 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408. |
[4] | 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893. |
[5] | 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976. |
[6] | 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052. |
[7] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[8] | 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821. |
[9] | 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760. |
[10] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[11] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[12] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[13] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[14] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[15] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
|