作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1191-1198.doi: 10.3724/SP.J.1006.2022.13027
WANG Xia*(), YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan
摘要:
植物可能会记住已有的逆境刺激,且这种记忆可以跨代遗传。为研究G0代干旱锻炼对玉米B73 G1代当代干旱胁迫记忆基因表达的影响及其启动子区DNA甲基化的影响,实验用20% PEG-6000模拟干旱条件,选取在玉米和拟南芥已知的当代均具有干旱胁迫记忆特性的6个基因为研究对象,利用qRT-PCR技术分析这些基因的表达水平变化,并进一步利用重亚硫酸盐测序PCR技术分析在2个世代中表达差异最显著基因启动子区的DNA甲基化率变化规律。结果表明:干旱胁迫上调了6个当代胁迫记忆基因的表达水平,均呈+/+模式,同当代多次干旱胁迫时表达水平变化趋势一致,且G1代表达水平显著高于G0代;干旱胁迫降低了GRMZM2G088396基因启动子区的甲基化水平,检测区1两个世代DNA甲基化率的降低主要由CHG和CHH甲基化水平降低造成,检测区2 DNA甲基化率的降低主要是由CG和CHH甲基化水平降低造成,G1代2个检测区总胞嘧啶甲基化率均显著低于G0代,说明G0代干旱锻炼使G1代GRMZM2G088396基因启动子区的DNA甲基化修饰产生了可遗传的变异,它可能直接参与GRMZM2G088396基因的表达。
[1] | 王芳, 王铁兵, 李鹏德. 外源ABA对干旱胁迫下玉米幼苗氧化损伤的保护作用. 草业科学, 2019, 36:2887-2894. |
Wang F, Wang T B, Li P D. Protective effects of exogenous ABA on oxidative damage in maize seedlings under drought stress. Prat Sci, 2019, 36:2887-2894 (in Chinese with English abstract). | |
[2] | Zhang X J, Liu X Y, Zhang D F, Tang H J, Sun B C, Li C H, Hao L Y, Liu C, Li Y X, Shi Y S, Xie X Q, Song Y C, Wang T Y, Li Y. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance. PLoS One, 2017, 12:e0179477. |
[3] | 徐田军, 吕天放, 赵久然, 王荣焕, 刘月娥, 张连平, 叶翠玉, 刘秀芝. 玉米萌发幼苗期的抗旱性鉴定评价. 中国种业, 2017, (4):42-46. |
Xu T J, Lyu T F, Zhao J R, Wang R H, Liu Y, Zhang L P, Ye C Y, Liu X Z. Evaluation on drought resistance of maize at germination and seedling stage. China Seed Indus, 2017, (4):42-46 (in Chinese with English abstract). | |
[4] |
Bostock R M. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol, 2005, 43:545-580.
doi: 10.1146/phyto.2005.43.issue-1 |
[5] |
Kiranmai K, Rao G L, Pandurangaiah M, Nareshkumar A, Reddy V A, Lokesh U, Venkatesh B, Johnson A M A, Sudhakar C. A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut(Arachis hypogaea L.) plants. Front Plant Sci, 2018, 9:346.
doi: 10.3389/fpls.2018.00346 pmid: 29616059 |
[6] |
Choi C S, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genome, 2007, 277:589-600.
doi: 10.1007/s00438-007-0209-1 |
[7] |
Conrath U, Beckers G J M, Langenbach C J G, Jaskiewicz M R J. Priming for enhanced defense. Annu Rev Phytopathol, 2015, 53:97-119.
doi: 10.1146/annurev-phyto-080614-120132 pmid: 26070330 |
[8] |
Ramírez D A, Rolando J L, Yactayo W, Monneveux P, Mares V, Quiroz R. Improving potato drought tolerance through the induction of long-term water stress memory. Plant Sci, 2015, 238:26-32.
doi: 10.1016/j.plantsci.2015.05.016 pmid: 26259171 |
[9] |
Lämke J L, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol, 2017, 18:124.
doi: 10.1186/s13059-017-1263-6 pmid: 28655328 |
[10] |
Li P, Yang H, Wang L, Liu H J, Huo H Q. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front Genet, 2019, 10:55.
doi: 10.3389/fgene.2019.00055 |
[11] | Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Jr Meins F, Kovalchuk I. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One, 2010, 5:e9514. |
[12] | Herman J J, Sultan S E. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc Biol Sci, 2016, 283:1838. |
[13] |
Ding Y, Virlouvet L, Liu N, Riethoven J J, Fromm M, Avramova Z. Dehydration stress memory genes of Zea mays: comparison with Arabidopsis thaliana. BMC Plant Biol, 2014, 14:141.
doi: 10.1186/1471-2229-14-141 |
[14] |
Ding Y, Fromm M, Avramova Z. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun, 2012, 3:740.
doi: 10.1038/ncomms1732 |
[15] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[16] |
Li L C, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics, 2002, 18:1427-1431.
doi: 10.1093/bioinformatics/18.11.1427 |
[17] |
Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol, 1987, 196:261-282.
doi: 10.1016/0022-2836(87)90689-9 pmid: 3656447 |
[18] |
Wang B, Li W, Wang J. Genetic diversity of Alternanthera philoxeroides in China. Aquat Bot, 2005, 81:277-283.
doi: 10.1016/j.aquabot.2005.01.004 |
[19] |
Hetzl J, Foerster A M, Raidl G, Scheid O M. CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J, 2007, 51:526-536.
doi: 10.1111/j.1365-313X.2007.03152.x |
[20] | Chen J B, Wang S M, Jing R L, Mao X G. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol, 2009, 166:12-19. |
[21] | 王俊娟, 阴祖军, 王德龙, 王帅, 王晓歌, 樊伟丽, 郭丽雪, 陈超, 叶武威. 陆地棉脱水素蛋白GhDHN 1的结构特征和无序性分析. 中国棉花, 2017, 44(8):17-19. |
Wang J J, Yin Z J, Wang D L, Wang S, Wang X G, Fan W L, Guo L X, Chen C, Ye W W. The structure and disordered characteristics of GhDHNl from Upland Cotton. China Cott, 2017, 44(8):17-19 (in Chinese with English abstract). | |
[22] | Vanyushin B F, Ashapkin V V. DNA methylation in higher plants: past, present and future. BBA-Gene Regul Mech, 2011, 18:360-368. |
[23] | Hulten M V, Pelser M, Loon L C V, Pieterse C M J, Ton J. Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103:5602-5607. |
[24] |
Wang W S, Pan Y J, Zhao X Q, Dwivedi D, Zhu L H, Ali J, Fu B Y, Li Z K. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot, 2011, 62, 1951-1960.
doi: 10.1093/jxb/erq391 |
[25] | Zheng X G, Chen L, Li M, Lou Q J, Wang P, Li T, Liu H Y, Luo L J. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One, 2013, 8:e80253. |
[26] |
Kapoor A, Agius F, Zhu J K. Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett, 2005, 579:5889-5898.
doi: 10.1016/j.febslet.2005.08.039 |
[27] |
Zheng Q, Rowley M J, Böhmdorfer G, Sandhu D, Gregory B D, Wierzbicki A T. RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes. Plant J, 2013, 73:179-189.
doi: 10.1111/tpj.12034 |
[28] |
Liu J Z, Feng L L, Gu X T, Deng X, Qiu Q, Li Q, Zhang Y Y, Wang M Y, Deng Y W, Wang E, He Y K, Bäurle I, Li J, Cao X F, He Z H. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res, 2019, 29:379-390.
doi: 10.1038/s41422-019-0145-8 |
[29] | Wang J J, Meng X W, Dobrovolskaya O B, Orlov Y L, Chen M. Non-coding RNAs and their roles in stress response in plants. Genom Prot Bioinf, 2017, 15:301-312. |
[1] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[2] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[3] | 刘莉铭, 刘红彦, 田保明. 茎点枯病菌诱导下芝麻内参基因的筛选[J]. 作物学报, 2012, 38(03): 471-478. |
[4] | 张岗,董艳玲,夏宁,张毅,王晓杰,屈志鹏,李依民,黄丽丽,康振生. 利用cDNA-AFLP技术分析小麦成株抗条锈性差异基因表达特征[J]. 作物学报, 2010, 36(3): 401-409. |
[5] | 郭贤仕;山仑. 前期干旱锻炼对谷子水分利用效率的影响[J]. 作物学报, 1994, 20(03): 352-356. |
|