作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1181-1190.doi: 10.3724/SP.J.1006.2022.11042
姚晓华1,2(), 王越1(), 姚有华1,2, 安立昆1,2, 王燕1,2, 吴昆仑1,2,*()
YAO Xiao-Hua1,2(), WANG Yue1(), YAO You-Hua1,2, AN Li-Kun1,2, WANG Yan1,2, WU Kun-Lun1,2,*()
摘要:
为筛选与青稞条纹病相关的AGO类基因, 本研究以青稞抗病品种昆仑14号和感病品种1141为材料, 从感病和正常叶片的转录组测序结果中获得一个差异表达的AGO家族新基因, 克隆验证了该基因为青稞HvMEL1 AGO。HvMEL1 AGO基因全长3462 bp, 其中蛋白质编码区(CDS, coding domain sequence)在昆仑14号和1141品种中的一致性为100%, 无内含子, 全长3161 bp, 包含一个3129 bp开放阅读框, 编码1043个氨基酸, 理论等电点为9.33, 预测蛋白分子量为115,865.58 Da。蛋白质序列分析表明, HvMEL1 AGO为亲水性的不稳定酸性蛋白, 具有高度保守的DUF1785、PAZ和PIWI结构域, 属于AGO基因家族成员。进化树分析表明, HvMEL1 AGO与大麦AGO家族中HvAGO12、HvAGO18、HvAGO1D、HvAGO1B在拟南芥AGO家族系统发育树上属于AGO1一类; 与HvAGO12的亲缘关系最近。蛋白质互作预测结果表明, 在水稻中与MEL1作用密切的已知蛋白为DCL类, 分别为DCL1、DCL2A、DCL3A、DCL3B和DCL4。半定量和定量PCR结果表明, 条纹病胁迫下, 抗病品种昆仑14号与感病品种1141的HvMEL1 AGO基因表达量显著下降; 且1141显著高于昆仑14号(P<0.01)。推测青稞HvMEL1 AGO基因在青稞抗条纹病过程中发挥重要作用。本研究为探索HvMEL1 AGO基因在青稞抗条纹病过程中的作用及调控机制奠定基础。
[1] | 强小林, 迟德钊, 冯继林. 青藏高原区域青稞生产与发展现状. 西藏科技, 2008, 33(3):11-17. |
Qiang X L, Chi D Z, Feng J L. Current status of hulless barley production and development in the Tibetan Plateau region. Tibet Sci Technol, 2008, 33(3):11-17 (in Chinese). | |
[2] | 原红军, 曾兴权, 王玉林, 徐齐君, 韦泽秀, 尼玛扎西. 青稞法尼基转移酶β亚基编码基因HbERA1的克隆及表达分析. 麦类作物学报, 2014, 34:1465-1470. |
Yuan H J, Zeng X Q, Wang Y L, Xu Q J, Wei Z X, Mimazhaxi. Cloning and characterization of beta subunit of protein farnesyl transferase HbERA1 in Tibetan hulless barley (Hordeum vulgare subsp. vulgare). J Triticeae Crops, 2014, 34:1465-1470 (in Chinese with English abstract). | |
[3] | Gatti A, Rizza F, Delogu G, Terzi V, Porta-puglia A, Vannacci G. Physiological and biochemical variability in a population of Drechslera graminea. J Genet Breed, 1992, 46:179-186. |
[4] |
International Barley Sequencing Consortium (IBSC). A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491:711-716.
doi: 10.1038/nature11543 |
[5] |
Arru L, Francia E, Pecchioni N. Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the ‘Steptoe’ × ‘Morex’ spring barley cross. Theor Appl Genet, 2003, 106:668-675.
pmid: 12595996 |
[6] | 郑果, 王春明, 洪流, 王生荣. 7种杀菌剂对大麦条纹病的防治效果. 草原与草坪, 2011, 31(6):65-68. |
Zheng G, Wang C M, Hong L, Wang S R. Control effect of 7 fungicides on barley stripe disease. Grassl Turf, 2011, 31(6):65-68 (in Chinese with English abstract). | |
[7] | 王建. 青稞条纹病的发生与防治. 江西农业, 2018, 11(12):25. |
Wang J. Incidence and control of barley streak disease. Jiangxi Agric, 2018, 11(12):25 (in Chinese). | |
[8] | Yan J H, Yao Q, Guo Q Y, Chen H M, Hou L, Xu S C. Control effect of four seed coatings on barley leaf stripe caused by drechslera gramine. Plant Prot, 2016, 42:233-236. |
[9] |
Arru L, Niks RE, Lindhout P, Valé G, Francia E, Pecchioni N. Genomic regions determining resistance to leaf stripe (Pyrenophora graminea) in barley. Genome, 2002, 45:460-466.
pmid: 12033613 |
[10] |
Biselli C, Urso S, Bernardo L, Tondelli A, Tacconi G, Martino V, Grando S, Valè G. Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum. Theor Appl Genet, 2010, 120:1207-1218.
doi: 10.1007/s00122-009-1248-2 pmid: 20041226 |
[11] |
Haegi A, Bonardi V, Dall’Aglio E, Glissant D, Tumino G, Collins N C, Bulgarelli D, Infantino A, Stanca A M, Delledonne M, Valè G. Histological and molecular analysis of Rdg2a barley resistance to leaf stripe. Mol Plant Pathol, 2008, 9:463-478.
doi: 10.1111/mpp.2008.9.issue-4 |
[12] | Bulgarelli D, Biselli C, Collins N C, Consonni G, Stanca A M, Schulze-Lefert P, Valè G. The CC-NB-LRR-Type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS One, 2010, 5:e12599. |
[13] | 姚晓华, 王越, 安立昆, 姚有华, 杨雪, 白羿雄, 吴昆仑. 青稞HvtAGO1基因的克隆及其在条纹病胁迫下的表达. 西北植物学报, 2021, 41:20-28. |
Yao X H, Wang Y, An L K, Yao Y H, Yang X, Bai Y X, Wu K L. Identification and expression analysis of HvtAGO1 gene in response to barley leaf stripe in Tibetan hulless barley. Acta Bot Boreali-Occident Sin, 2021, 41:20-28 (in Chinese with English abstract). | |
[14] | 杨雪, 姚晓华, 安立昆, 姚有华, 白羿雄, 吴昆仑. 青稞NBS-LRR类基因HvtRGA的克隆与条纹病胁迫表达分析. 西北植物学报, 2020, 40:1655-1662. |
Yang X, Yao X H, An L K, Yao Y H, Bai Y X, Wu K L. Isolation and expression analysis of NBS-LRR HvtRGA gene in hulless barley under stripe disease stress. Acta Bot Boreali-Occident Sin, 2020, 40:1655-1662 (in Chinese with English abstract). | |
[15] | 吴宽然, 杨建明, 朱靖环, 金婷. 大麦条纹病抗性及防治研究进展. 浙江农业学报, 2013, 25:903-907. |
Wu K R, Yang J M, Zhu J H, Jin T. Advances of research on control of barley leaf stripe disease. Acta Agric Zhejiangensis, 2013, 25:903-907 (in Chinese with English abstract). | |
[16] |
Inal B, Türktas M, Eren H, Ilhan E, Okay S, Atak M, Erayman M, Unver T. Genome-wide fungal stress responsive miRNA expression in wheat. Planta, 2014, 240:1287-1298.
doi: 10.1007/s00425-014-2153-8 |
[17] |
Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J, 1998, 17:170-180.
pmid: 9427751 |
[18] | Hervé V, Edward N. AGO1 homeostasis involves differential production of 21-nt and 22-nt miR168 Species by MIR168a and MIR168b. PLoS One, 2009, 4:e6442. |
[19] |
Komiya R, Ohyanagi H, Niihama M, Watanabe T, Nakano M, Kurata N, Nonomura K I. Rice germline-specific HvMEL1 AGO protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J, 2014, 78:385-397.
doi: 10.1111/tpj.12483 |
[20] |
Tucker M R, Okada T, Hu Y, Scholefield A, Taylor J M, Koltunow A M G. Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development, 2012, 139:1399.
doi: 10.1242/dev.075390 |
[21] |
Xu R R, Liu C Y, Li N, Zhang S Z. Global identification and expression analysis of stress-responsive genes of the Argonaute family in apple. Mol Genet Genomics, 2016, 291:2015-2030.
doi: 10.1007/s00438-016-1236-6 |
[22] | Luo M, Peng H, Gao J, Pan G T, Zhang Z M. Identification and functional analysis of miRNAs in response to banded leaf and sheath blight in Zea mays. Chin J Biochem Mol Biol, 2012, 28:1122-1132. |
[23] | 黄赳. NRTs基因的克隆及其功能研究. 中国农业科学院硕士学位论文, 北京, 2021. |
Huang J. Cloning and Functional Study of NRTs Gene. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. | |
[24] | 王越, 姚晓华, 吴昆仑, 白羿雄, 魏晓星. 青稞HVA1和blt4.9基因对模拟水分胁迫的响应差异及其在抗旱育种中的应用. 麦类作物学报, 2019, 39:666-674. |
Wang Y, Yao X H, Wu K L, Bai Y X, Wei X X. Difference of HVA1 and blt4.9 Gene expression patterns under simulated drought stress and the potention application in drought tolerance breeding in hulless barley. J Triticeae Crops, 2019, 39:666-674 (in Chinese with English abstract). | |
[25] | Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 2001, 29:e45. |
[26] |
Agustín S, Lucas D, Abelardo V, Manuel T, Francisco T, Marcela D. Genome-wide analysis of AGO, DCL and RDR gene families reveals RNA-directed DNA methylation is involved in fruit abscission in Citrus sinensis. BMC Plant Biol, 2019, 19:401.
doi: 10.1186/s12870-019-1998-1 |
[27] |
Song J J, Joshua-Tor L. Argonaute and RNA-getting into the groove. Curr Opin Struct Biol, 2006, 16:5-11.
doi: 10.1016/j.sbi.2006.01.010 |
[28] |
Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel D J. Structure of an Argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 2008, 456:921-926.
doi: 10.1038/nature07666 |
[29] |
Zeng X Q, Xu T, Ling Z H, Wang Y L, Li X F, Xu S Q, Xu Q J, Zha S, Qimei W M, Basang Y Z, Dunzhu J B, Yu M Z, Yuan H J, Nyima T. An improved high-quality genome assembly and annotation of Tibetan hulless barley. Sci Data, 2020, 7:139.
doi: 10.1038/s41597-020-0480-0 |
[30] |
Ta K N, Sabot F, Adam H, Vigouroux Y, Mita S D, Ghesquière A, Do N V, Gantet P, Jouannic S. miR2118-triggered phased siRNAs are differentially expressed during the panicle development of wild and domesticated African rice species. Rice, 2016, 9:10.
doi: 10.1186/s12284-016-0082-9 pmid: 26969003 |
[31] |
Vaucheret H. Plant ARGONAUTES. Trends Plant Sci, 2008, 13:350-358.
doi: 10.1016/j.tplants.2008.04.007 pmid: 18508405 |
[32] | Fernández-Nohales P, Domenech M J, Martínez de Alba A E, Micol J L, Ponce M R, Madueño F. AGO1 controls Arabidopsis inflorescence architecture possibly by regulating TFL1 expression. Ann Botlondon, 2014, 114:1471-1481. |
[33] |
Thiébeauld O, Charvin M, Rastogi M S, Yang F, Pontier D, Pouzet C, Bapaume L, Li G, Deslandes L, Lagrange T, Alfano J R, Navarro L. A bacterial GW-effector targets Arabidopsis AGO1 to promote pathogenicity and induces Effector-triggered immunity by disrupting AGO1 homeostasis. BioRxiv, 2017, doi: 10.1101/215590.
doi: 10.1101/215590 |
[34] |
Zhang J, Zhang H, Srivastava A K, Pan Y, Bai J, Fang J, Shi H, Zhu J K. Knock-down of rice microrna166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol, 2018, 176:2082-2094.
doi: 10.1104/pp.17.01432 |
[35] |
Vaucheret H, Vazquez F, Crété P, Bartel D P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 2004, 18:1187-1197.
doi: 10.1101/gad.1201404 |
[36] | Sheng K P, Gullerova M. Noncanonical functions of microrna pathway enzymes—drosha, dgcr8, dicer and ago proteins. FEBS Lett, 2018, 592:992-1004. |
[37] |
Kim V N. Sorting out small RNAs. Cell, 2008, 133:25-26.
doi: 10.1016/j.cell.2008.03.015 |
[38] |
Cui D L, Meng J Y, Ren X Y, Yue J J, Fu H Y, Huang M T, Zhang Q Q, Gao S J. Genome-wide identification and characterization of DCL, AGO and RDR gene families in. Sci Rep, 2020, 10:13202.
doi: 10.1038/s41598-020-70061-7 |
[1] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[2] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[3] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[4] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[5] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[6] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[7] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[8] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[9] | 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198. |
[10] | 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289. |
[11] | 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595. |
[12] | 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516. |
[13] | 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285. |
[14] | 王凯,赵小红,姚晓华,姚有华,白羿雄,吴昆仑. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627. |
[15] | 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213. |
|