作物学报 ›› 2022, Vol. 48 ›› Issue (2): 304-319.doi: 10.3724/SP.J.1006.2022.13002
渠建洲1,2(), 冯文豪1, 张兴华1,2, 徐淑兔1,2,*(), 薛吉全1,2,*()
QU Jian-Zhou1,2(), FENG Wen-Hao1, ZHANG Xing-Hua1,2, XU Shu-Tu1,2,*(), XUE Ji-Quan1,2,*()
摘要:
玉米籽粒大小是产量重要构成因子之一, 也是受多基因调控的复杂数量性状, 挖掘玉米籽粒大小相关性状的关键调控基因, 将有助于提高玉米的产量。本研究以212份优良玉米自交系为材料, 于2018年和2019年分别对粒长、粒宽和粒厚进行测定, 并结合均匀分布于玉米基因组的73,006个单核苷酸多态性(single nucleotide polymorphism, SNP)标记进行全基因组关联分析。基于FarmCPU算法, 在玉米的10条染色体上检测到47个与籽粒大小相关性状关联的SNP。结合B73玉米自交系籽粒发育的动态时空转录数据, 在显著SNP标记的连锁不平衡区域内, 共检测到58个与籽粒大小相关的候选基因, 其编码的蛋白与多种蛋白存在互作关系, 参与并调控多个与籽粒发育密切相关的生物学过程。本研究为解析玉米籽粒发育的分子调控机制, 改良籽粒大小和提高作物产量提供了新的参考。
[1] | Godfray H C, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010,327:812-818. |
[2] | Li C H, Li Y X, Sun B C, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y, Wang D, Shi Y S, Song Y C, Wang T Y, Li Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013,193:303-316. |
[3] | Liu Z, Garcia A, McMullen M D, Flint-Garcia S A. Genetic analysis of kernel traits in maize-teosinte introgression populations. G3: Genes Genet Genom(Bethesda), 2016,6:2523-2530. |
[4] | Liu M, Tan X, Yang Y, Liu P, Zhang X, Zhang Y, Wang L, Hu Y, Ma L, Li Z, Zhang Y, Zou C, Lin H, Gao S, Lee M, Lubberstedt T, Pan G, Shen Y. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J, 2020,18:207-221. |
[5] | Yan J, Warburton M, Crouch J. Association Mapping for Enhancing Maize (Zea mays L.) genetic improvement. Crop Sci, 2011,51:433-449. |
[6] | Xiao Y, Liu H, Wu L, Warburton M, Yan J. Genome-wide association studies in maize: praise and stargaze. Mol Plant, 2017,10:359-374. |
[7] | Yang C, Zhang L, Jia A, Rong T. Identification of QTL for maize grain yield and kernel-related traits. J Genet, 2016,95:239-247. |
[8] | Pang J, Fu J, Zong N, Wang J, Song D, Zhang X, He C, Fang T, Zhang H, Fan Y, Wang G, Zhao J. Kernel size-related genes revealed by an integrated eQTL analysis during early maize kernel development. Plant J, 2019,98:19-32. |
[9] | Qin W, Li Y X, Wu X, Li X, Chen L, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. Fine mapping of qKL1.07, a major QTL for kernel length in maize. Mol Breed, 2016,36:8. |
[10] | Li Q, Yang X H, Bai G H, Warburton M L, Mahuku G, Gore M, Dai J R, Li J S, Yan J B. Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet, 2010,120:753-763. |
[11] | Li Q, Li L, Yang X H, Warburton M L, Bai G H, Dai J R, Li J S, Yan J B. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol, 2010,10:143. |
[12] | Li T, Qu J Z, Wang Y H, Chang L G, He K H, Guo D, Zhang X H, Xu S T, Xue J Q. Genetic characterization of inbred lines from Shaan A and B groups for identifying loci associated with maize grain yield. BMC Genet, 2018,19:63. |
[13] | Li T, Qu J Z, Tian X K, Lao Y H, Wei N N, Wang Y H, Hao Y C, Zhang X H, Xue J Q, Xu S T. Identification of ear morphology genes in maize (Zea mays L.) using selective sweeps and association mapping. Front Genet, 2020,11:747. |
[14] | Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985,25:192-194. |
[15] | Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980,8:4321-4325. |
[16] | Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007,81:559-575. |
[17] | Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011,88:76-82. |
[18] | Zhang C, Dong S S, Xu J Y, He W M, Yang T L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 2019,35:1786-1788. |
[19] | Tang Y, Liu X, Wang J, Li M, Wang Q, Tian F, Su Z, Pan Y, Liu D, Lipka A E, Buckler E S, Zhang Z,. GAPIT Version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome, 2016, 9: doi: 10.3835/plantgenome2015.11.20. |
[20] | Liu X, Huang M, Fan B, Buckler E S, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet, 2016,12:e1005767. |
[21] | Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, Lai J. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol, 2014,166:252-264. |
[22] | Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003,13:2498-2504. |
[23] | Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res, 2010,38:W64-W70. |
[24] | Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci, 2012,196:125-131. |
[25] | Liu Y, Wang L, Sun C, Zhang Z, Zheng Y, Qiu F. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet, 2014,127:1019-1037. |
[26] | Raihan M S, Liu J, Huang J, Guo H, Pan Q, Yan J. Multi- environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng 58 × SK maize population. Theor Appl Genet, 2016,129:1465-1477. |
[27] | Zhong S, Zhao M, Shi T, Shi H, An F, Zhao Q, Guo H. EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci USA, 2009,106:21431-21436. |
[28] | Zhu Z, An F, Feng Y, Li P, Xue L, A M, Jiang Z, Kim J, To T, Li W, Zhang X, Yu Q, Dong Z, Chen W Q, Seki M, Zhou J, Guo H. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA, 2011,108:12539-12544. |
[29] | He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie D, Raikhel N, Yang Z, Stepanova A, Alonso J, Guo H. A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell, 2011,23:3944-3960. |
[30] | Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell, 2012,24:2578-2595. |
[31] | Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X. Guo H, Zhou J. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell, 2009,21:2527-2540. |
[32] | Silverstone A, Ciampaglio C, Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell, 1998,10:155-169. |
[33] | Bolle C, Koncz C, Chua N H. PAT1, a new member of the GRAS family, is involved in phytochrome a signal transduction. Gene Dev, 2000,14:1269-1278. |
[34] | Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Gene Dev, 2003,17:1175-1187. |
[35] | Stuurman J, Jaggi F, Kuhlemeier C. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Gene Dev, 2002,16:2213-2218. |
[36] | Moon J, Skibbe D, Timofejeva L, Wang C J, Kelliher T, Kremling K, Walbot V, Cande W Z. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J, 2013,76:592-602. |
[37] | Rademacher E H, Lokerse A S, Schlereth A, Llavata-Peris C I, Bayer M, Kientz M, Freire Rios A, Borst J W, Lukowitz W, Jurgens G, Weijers D. Different auxin response machineries control distinct cell fates in the early plant embryo. Dev Cell, 2012,22:211-222. |
[38] | Smith D K, Jones D M, Lau J B R, Cruz E R, Brown E, Harper J F, Wallace I S. A putative protein O-Fucosyltransferase facilitates pollen tube penetration through the stigma-style interface. Plant Physiol, 2018,176:2804-2818. |
[39] | Wang Y, He Y, Su C, Zentella R, Sun T P, Wang L. Nuclear localized O-Fucosyltransferase SPY facilitates PRR5 proteolysis to fine-tune the pace of Arabidopsis circadian clock. Mol Plant, 2020,13:446-458. |
[40] | Su W, Liu Y, Xia Y, Hong Z, Li J. The Arabidopsis homolog of the mammalian OS-9 protein plays a key role in the endoplasmic reticulum-associated degradation of misfolded receptor-like kinases. Mol Plant, 2012,5:929-940. |
[41] | van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genome, 2003,4:50. |
[42] | Malinova I, Kunz H H, Alseekh S, Herbst K, Fernie A R, Gierth M, Fettke J. Reduction of the cytosolic phosphoglucomutase in Arabidopsis reveals impact on plant growth, seed and root development, and carbohydrate partitioning. PLoS One, 2014,9:e112468. |
[43] | Zhang X, Li M, Agrawal A, San K Y. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng, 2011,13:713-722. |
[44] | Piroux N, Saunders K, Page A, Stanley J. Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy- related protein kinase AtSKeta, a component of the brassinosteroid signalling pathway. Virology, 2007,362:428-440. |
[45] | Perez-Perez J M, Ponce M R, Micol J L. The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev Biol, 2002,242:161-173. |
[46] | Hust B, Gutensohn M. Deletion of core components of the plastid protein import machinery causes differential arrest of embryo development in Arabidopsis thaliana. Plant Biol, 2006,8:18-30. |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[9] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[10] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[11] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[12] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[13] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[14] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[15] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
|