欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1312-1324.doi: 10.3724/SP.J.1006.2022.13040

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应

崔连花**(), 詹为民**(), 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培*(), 杨建平*(), 杨青华*()   

  1. 河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室 / 作物分子育种国家工程中心, 河南郑州 450002
  • 收稿日期:2021-05-27 接受日期:2021-10-19 出版日期:2022-06-12 网络出版日期:2021-11-02
  • 通讯作者: 张艳培,杨建平,杨青华
  • 作者简介:崔连花, E-mail: 1970125806@qq.com;
    詹为民, E-mail: 630950832@qq.com第一联系人:

    ** 同等贡献

  • 基金资助:
    国家自然科学基金项目(31871709);河南省技术创新引导专项(182106000050);北京市自然科学基金(重点)项目(6151002)

Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments

CUI Lian-Hua**(), ZHAN Wei-Min**(), YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei*(), YANG Jian-Ping*(), YANG Qing-Hua*()   

  1. College of Agronomy, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crops Science / Center for Crop Genome Engineering, Zhengzhou 450002, Henan, China
  • Received:2021-05-27 Accepted:2021-10-19 Published:2022-06-12 Published online:2021-11-02
  • Contact: ZHANG Yan-Pei,YANG Jian-Ping,YANG Qing-Hua
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31871709);Henan Technology Innovation Guidance Project(182106000050);Key Project of Beijing Natural Science Foundation(6151002)

摘要:

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)作为一种E3泛素连接酶, 能够介导拟南芥光信号转导中HY5、LAF1、HFR1和CO等正调控因子的泛素化降解, 从而调控幼苗光形态建成、花青素合成和开花等生物学过程。为了探索玉米COP1基因的功能, 本文以玉米自交系B73为研究材料, 利用反转录PCR (RT-PCR)方法克隆了2个ZmCOP1基因, 分别命名为ZmCOP1aZmCOP1b。通过生物信息学相关软件和网站对ZmCOP1进行理化性质分析、结构域预测和系统发育树分析, 采用实时荧光定量PCR (qRT-PCR)技术进一步分析2个ZmCOP1基因在不同组织中的转录丰度, 以及其在幼苗期对不同光质和光周期处理的响应。研究发现, ZmCOP1aZmCOP1b的开放阅读框(ORF)分别包含2082个和2061个核苷酸, 编码693个和686个氨基酸。玉米、水稻、高粱、谷子和拟南芥的COP1蛋白具有相同的结构域和较高的氨基酸序列一致性, 暗示它们可能具有相似的功能。2个ZmCOP1基因主要在玉米地上组织中表达, 均能迅速响应不同光质处理, 且ZmCOP1a的转录丰度普遍高于ZmCOP1b, 表明ZmCOP1a可能在不同光质处理下具有更重要的作用。在长日照和短日照条件下, ZmCOP1aZmCOP1b在黑暗阶段的转录丰度整体高于光照阶段, 有趣的是, 二者在光照阶段的表达模式相似, 但是在黑暗阶段, ZmCOP1b的转录丰度高于ZmCOP1a。这说明在不同光周期条件下, ZmCOP1b可能比ZmCOP1a更重要。综上这些研究结果表明, ZmCOP1aZmCOP1b具有功能冗余和分化。二者可以参与不同光信号通路, 可能在玉米光形态建成和花期调控中发挥重要作用。本研究为进一步探明ZmCOP1aZmCOP1b基因的功能及其在玉米育种中的应用提供了研究基础。

关键词: 玉米, ZmCOP1, 光处理, 基因克隆, 转录丰度

Abstract:

As an E3 ubiquitin ligase, CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) mediates ubiquitination and degradation of positive regulatory factors such as HY5, LAF1, HFR1, and CO of the light signal transduction in Arabidopsis thaliana, thus mediating seedling photomorphogenesis, anthocyanin synthesis, and flowering time. To explore functional differentiation of ZmCOP1 genes, we cloned two ZmCOP1 genes, designated as ZmCOP1a and ZmCOP1b, from maize inbred line B73 by reverse transcription PCR (RT-PCR). The physicochemical properties, domain prediction and phylogenetic tree of ZmCOP1 were analyzed by bioinformatics software and website. The transcription abundances of two ZmCOP1 genes in different tissues and their responses to different light treatments at seedling stage were further analyzed by quantitative RT-PCR (qRT-PCR). We found that the open reading frames (ORFs) of ZmCOP1a and ZmCOP1b possessed 2082 and 2061 nucleotides, encoding 693 and 686 amino acids, respectively. The COP1 proteins of maize, rice, sorghum, millet, and Arabidopsis shared the same structural domains and high amino acid sequence identity, indicating that they may have similar functions. The two ZmCOP1 genes were mainly expressed in the above-ground tissues. Both of them could rapidly respond to different light treatments, while the transcription abundances of ZmCOP1a were generally higher than those of ZmCOP1b. It might suggest that ZmCOP1a may play more important roles under different light conditions. Under long-day or short-day condition, the transcription abundances of both ZmCOP1a and ZmCOP1b during the dark phase were higher than those during the light phase. Another interesting case is that both genes kept similar expression patterns during the light phase, while, transcription abundances of ZmCOP1b were higher than those of ZmCOP1a during the dark phase. It might imply that ZmCOP1b may be more important than ZmCOP1a in response to long-day or short-day treatment. In conclusion, both ZmCOP1a and ZmCOP1b had got functional redundancy and differentiation. Both genes could participate in different light signal pathways, and regulate maize photomorphogenesis and flowering period. Our results also provide a research foundation for further exploration of two ZmCOP1 genes and application in molecular breeding in maize.

Key words: Zea mays, ZmCOP1, light treatment, gene cloning, transcription abundance

表1

同源克隆所用引物"

基因名称
Gene name
基因编号
Accession number
正向引物序列
Forward sequence (5°-3°)
反向引物序列
Reverse sequence (5°-3°)
ZmCOP1a Zm00001d018207 GGGGGACTCTTGACCATGGGCATGGGCGACTCCTCGGTG AAGTTCTTCTCCTTTACTAGTAGGAGCAAGTACAAGAACTTTTATGG
ZmCOP1b Zm00001d052138 GGGGGACTCTTGACCATGGGCATGGGCGACTCCTCGGTG AAGTTCTTCTCCTTTACTAGTAGGAGCAAGTACATGAACTTTTATGG

表2

qRT-PCR所用引物"

基因名称
Gene name
基因编号
Accession number
正向引物序列
Forward sequence (5°-3°)
反向引物序列
Reverse sequence (5°-3°)
ZmCOP1a Zm00001d018207 GCTAACAACGTTCACTCGATAC CAATGCACATCTGATGGTTCAT
ZmCOP1b Zm00001d052138 CTGCTGCGGGCACTACCTTA CCCATTTCATTTCCCTGTTG
ZmUBQ1 Zm00001d015327 ACTTCATGCTTTCGTCCTACGCTCCA CTGGGAGGCTGGTAGTTGATTC

图1

2个ZmCOP1 cDNA片段的RT-PCR扩增及其表达载体pCAMBIA1302-ZmCOP1的双酶切鉴定 A: ZmCOP1的cDNA片段的RT-PCR扩增。M: marker III DNA ladder; 1: ZmCOP1a PCR产物; 2: ZmCOP1b PCR产物。B: pCAMBIA1302-ZmCOP1的双酶切鉴定。M: DL10000 DNA ladder; 1和2分别为pCAMBIA1302-ZmCOP1a和pCAMBIA1302-ZmCOP1b经Nco I和Spe I双酶切后获得约2082 bp和2061 bp的条带; 箭头表示ZmCOP1基因片段。"

图2

玉米与其他植物COP1蛋白在氨基酸水平的系统发育分析 在Ensembl Plants网站获得全长氨基酸序列, 使用MAFFT与MEGA软件对其进行系统发育分析, 使用DNAMAN Version 8软件进行氨基酸序列比对。ZmCOP1a: 玉米, Zm00001d018207; ZmCOP1b: 玉米, Zm00001d052138; SbCOP1: 高粱, KXG31183; SvCOP1: 狗尾草, TKW41800; SiCOP1: 谷子, KQL31700; OsCOP1: 水稻, Os02t0771100; BdCOP1: 二穗短柄草, KQK01702; TaCOP1b: 小麦, TraesCS6D02G305800; TaCOP1c: 小麦, TraesCS6B02G356400; TaCOP1a: 小麦, TraesCS6A02G326100; GmCOP1a: 大豆, KRH14801; GmCOP1b: 大豆, KRH73341; MeCOP1: 木薯, OAY35060; GrCOP1: 棉花, KJB42844; AtCOP1: 拟南芥, AT2G32950; BnCOP1a: 甘蓝型油菜, CDY52540; BnCOP1b: 甘蓝型油菜, CDY12145; BoCOP1: 甘蓝, Bo4g045420。"

图3

玉米与拟南芥、水稻、高粱和谷子的COP1蛋白的氨基酸序列比对及结构域分析 利用SMART (http://smart.embl-heidelberg.de/)和InterPro网站(https://www.ebi.ac.uk/interpro/)以及MAFFT软件进行氨基酸序列比对和结构域分析。AtCOP1: 拟南芥COP1, AT2G32950; ZmCOP1a: 玉米COP1a, Zm00001d018207; ZmCOP1b: 玉米COP1b, Zm00001d052138; OsCOP1: 水稻COP1, Os02t0771100; SbCOP1: 高粱COP1, KXG31183; SiCOP1: 谷子COP1, KQL31700。"

图4

2个ZmCOP1 qRT-PCR引物的验证及二者在不同组织中的相对表达水平 A: ZmCOP1a基因qRT-PCR的溶解曲线。B: ZmCOP1b基因qRT-PCR的溶解曲线。C: ZmCOP1a和ZmCOP1b基因qRT-PCR的相对定量标准曲线及引物扩增效率。R2: 相关系数; E: 引物扩增效率, E = 10 ^ (-1/slope) - 1。D: 以玉米自交系B73的不同组织(根、幼穗、茎、苞叶、雄花、叶枕、叶鞘、花丝和叶)为材料, 对ZmCOP1a和ZmCOP1b进行qRT-PCR分析。以根中ZmCOP1a的转录丰度为参照(设为1), 柱状图显示结果为3次生物学重复的相对平均值, 误差线代表标准差, *: P < 0.05; **: P < 0.01。"

图5

2个ZmCOP1在不同持续光质下的相对表达水平 玉米自交系B73分别在黑暗(Dk)、持续远红光(FR, 0.3 µmol m-2 s-1)、持续红光(R, 22.3 µmol m-2 s-1)、持续蓝光(B, 13.0 µmol m-2 s-1)或持续白光(WL, 17.0 µmol m-2 s-1)下生长13 d。以黑暗条件下ZmCOP1a的转录丰度(设为1)为参照, 柱状图显示的是3次生物学重复的相对平均值, 误差线代表标准差, *: P < 0.05; **: P < 0.01。"

图6

由黑暗转到不同光质后ZmCOP1a和ZmCOP1b的相对表达水平 玉米自交系B73幼苗在黑暗(Dk)条件下生长11 d后, 分别转到红光(R, 22.3 µmol m-2 s-1)、远红光(FR, 0.3 µmol m-2 s-1)、蓝光(B, 13.0 µmol m-2 s-1)和白光(WL, 17.0 µmol m-2 s-1)条件下, 并在0、0.25、0.5、1、2、4、8、12和24 h取样, 用于qRT-PCR分析。以黑暗条件下ZmCOP1a转录丰度(设为1)作为参照, 折线图显示3生物学重复的相对平均值, 误差线代表标准差。"

图7

光周期处理下ZmCOP1a和ZmCOP1b的相对表达水平 玉米自交系B73分别在长日照(LD, 16 h光照/8 h黑暗)或者短日照(SD, 8 h光照/16 h黑暗)条件下生长13 d后, 每2 h取一次样, 用于qRT-PCR分析。A和B图中数据均以长日照条件下12:00的ZmCOP1b转录丰度(设为1)为参照。折线图显示为3次生物学重复的相对平均值, 误差线代表标准差。"

[1] 李合生. 现代植物生理学(第3版). 北京: 高等教育出版社, 2012. pp 287-288.
Li H S. Modern Plant Physiology, 3rd edn. Beijing: Higher Education Press, 2012. pp 287-288(in Chinese).
[2] Sullivan J A, Deng X W. From seed to seed: the role of photoreceptors in Arabidopsis development. Dev Biol, 2003, 260: 289-297.
pmid: 12921732
[3] Wang Q, Lin C T. Mechanisms of cryptochrome-mediated photoresponses in plants. Annu Rev Plant Biol, 2020, 71: 103-129.
doi: 10.1146/annurev-arplant-050718-100300 pmid: 32169020
[4] Legris M, Ince Y Ç, Fankhauser C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun, 2019, 10: 5219.
doi: 10.1038/s41467-019-13045-0
[5] Qian C Z, Chen Z R, Liu Q, Mao W W, Chen Y L, Tian W, Liu Y, Han J P, Ou-yang X H, Huang X. Coordinated transcriptional regulation by the UV-B photoreceptor and multiple transcription factors for plant UV-B responses. Mol Plant, 2020, 13: 777-792.
doi: 10.1016/j.molp.2020.02.015
[6] Christie J M. Phototropin blue-light receptors. Annu Rev Plant Biol, 2007, 58: 21-45.
pmid: 17067285
[7] Podolec R, Demarsy E, Ulm R. Perception and signaling of Ultraviolet-B radiation in plants. Annu Rev Plant Biol, 2021, 72: 793-822.
doi: 10.1146/annurev-arplant-050718-095946 pmid: 33636992
[8] Ma L G, Gao Y, Qu L J, Chen Z L, Li J M, Zhao H Y, Deng X W. Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell, 2002, 14: 2383-2398.
doi: 10.1105/tpc.004416
[9] Podolec R, Ulm R. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr Opin Plant Biol, 2018, 45: 18-25.
doi: S1369-5266(17)30208-X pmid: 29775763
[10] Sharma A, Sharma B, Hayes S, Kerner K, Hoecker U, Jenkins G I, Franklin K A. UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nat Commun, 2019, 10: 4417.
doi: 10.1038/s41467-019-12369-1
[11] Hiltbrunner A. Shedding light on the evolution of light signalling. New Phytol, 2019, 224: 1412-1414.
doi: 10.1111/nph.16175 pmid: 31587283
[12] Han X, Huang X, Deng X W. The photomorphogenic central repressor COP1: conservation and functional diversification during evolution. Plant Commun, 2020, 1: 100044.
doi: 10.1016/j.xplc.2020.100044
[13] Deng X W, Caspar T, Quail P H. cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev, 1991, 5: 1172-1182.
doi: 10.1101/gad.5.7.1172
[14] Deng X W, Matsui M, Wei N, Wagner D, Chu A M, Feldmann K A, Quail P H. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell, 1992, 71: 791-801.
pmid: 1423630
[15] Seo H S, Yang J Y, Ishikawa M, Bolle C, Ballesteros M L, Chua N H. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature, 2003, 423: 995-999.
doi: 10.1038/nature01696
[16] Yang J P, Lin R C, Sullivan J, Hoecker U, Liu B L, Xu L, Deng X W, Wang H Y. Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell, 2005, 17: 804-821.
doi: 10.1105/tpc.104.030205
[17] Osterlund M T, Wei N, Deng X W. The roles of photoreceptor systems and the COP1-targeted destabilization of HY5 in light control of Arabidopsis seedling development. Plant Physiol, 2000, 124: 1520-1524.
pmid: 11115869
[18] Holm M, Ma L G, Qu L J, Deng X W. Two interacting bZIP proteins are direct targets of COP1-mediated control of light- dependent gene expression in Arabidopsis. Genes Dev, 2002, 16: 1247-1259.
doi: 10.1101/gad.969702
[19] Ling J J, Li J, Zhu D M, Deng X W. Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness. Proc Natl Acad Sci USA, 2017, 114: 3539-3544.
doi: 10.1073/pnas.1700850114
[20] Cañibano E, Bourbousse C, García-León M, Gómez B G, Wolff L, García-Baudino C, Lozano-Durán R, Barneche F, Rubio V, Fonseca S. DET1-mediated COP1 regulation avoids HY5 activity over second-site gene targets to tune plant photomorphogenesis. Mol Plant, 2021, 14: 963-982.
doi: 10.1016/j.molp.2021.03.009 pmid: 33711490
[21] Ponnu J. Molecular mechanisms suppressing COP1/SPA E3 ubiquitin ligase activity in blue light. Physiol Plant, 2020, 169: 418-429.
doi: 10.1111/ppl.v169.3
[22] Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli S K, Datta S. Light signaling and UV-B-mediated plant growth regulation. J Integr Plant Biol, 2020, 62: 1270-1292.
doi: 10.1111/jipb.v62.9
[23] Oh J, Park E, Song K, Bae G, Choi G. PHYTOCHROME INTERACTING FACTOR8 inhibits phytochrome A-mediated far-red light responses in Arabidopsis. Plant Cell, 2020, 32: 186-205.
doi: 10.1105/tpc.19.00515
[24] Ren H, Han J P, Yang P Y, Mao W W, Liu X, Qiu L L, Qian C Z, Liu Y, Chen Z R, Ou-yang X H, Chen X, Deng X W, Huang X. Two E3 ligases antagonistically regulate the UV-B response in Arabidopsis. Proc Natl Acad Sci USA, 2019, 116: 4722-4731.
doi: 10.1073/pnas.1816268116
[25] Huang X, Ouyang X H, Yang P Y, Lau O S, Li G, Li J G, Chen H D, Deng X W. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell, 2012, 24: 4590-4606.
doi: 10.1105/tpc.112.103994
[26] Tavridou E, Pireyre M, Ulm R. Degradation of the transcription factors PIF4 and PIF5 under UV-B promotes UVR8-mediated inhibition of hypocotyl growth in Arabidopsis. Plant J, 2020, 101: 507-517.
doi: 10.1111/tpj.14556
[27] Yu Y W, Wang J, Shi H, Gu J T, Dong J G, Deng X W, Huang R F. Salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1 to control seed germination. Plant Physiol, 2016, 170: 2340-2350.
doi: 10.1104/pp.15.01724
[28] Shi H, Liu R L, Xue C, Shen X, Wei N, Deng X W, Zhong S W. Seedlings transduce the depth and mechanical pressure of covering soil using COP1 and ethylene to regulate EBF1/EBF2 for soil emergence. Curr Biol, 2016, 26: 139-149.
doi: 10.1016/j.cub.2015.11.053
[29] Tanaka N, Itoh H, Sentoku N, Kojima M, Sakakibara H, Izawa T, Itoh J I, Nagato Y. The COP1 ortholog PPS regulates the juvenile-adult and vegetative-reproductive phase changes in rice. Plant Cell, 2011, 23: 2143-2154.
doi: 10.1105/tpc.111.083436
[30] Liu L J, Zhang Y C, Li Q H, Sang Y, Mao J, Lian H L, Wang L, Yang H Q. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell, 2008, 20: 292-306.
doi: 10.1105/tpc.107.057281 pmid: 18296627
[31] Zuo Z C, Liu H T, Liu B, Liu X M, Lin C T. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol, 2011, 21: 841-847.
doi: 10.1016/j.cub.2011.03.048
[32] Kang C Y, Lian H L, Wang F F, Huang J R, Yang H Q. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell, 2009, 21: 2624-2641.
doi: 10.1105/tpc.109.069765
[33] Zhao C Z, Wang P C, Si T, Hsu C C, Wang L, Zayed O, Yu Z P, Zhu Y F, Dong J, Tao W A, Zhu J K. MAP Kinase cascades regulate the cold response by modulating ICE1 protein stability. Dev Cell, 2017, 43: 618-629.
doi: 10.1016/j.devcel.2017.09.024
[34] Wei H B, Kong D X, Yang J, Wang H Y. Light regulation of stomatal development and patterning: shifting the paradigm from Arabidopsis to grasses. Plant Commun, 2020, 1: 100030.
doi: 10.1016/j.xplc.2020.100030
[35] Lee J H, Jung J H, Park C M. Light inhibits COP1-mediated degradation of ICE transcription factors to induce stomatal development in Arabidopsis. Plant Cell, 2017, 29: 2817-2830.
doi: 10.1105/tpc.17.00371
[36] Chen Q B, Bai L, Wang W J, Shi H Z, Botella J R, Zhan Q D, Liu K, Yang H Q, Song C P. COP1 promotes ABA-induced stomatal closure by modulating the abundance of ABI/HAB and AHG3 phosphatases. New Phytol, 2021, 229: 2035-2049.
doi: 10.1111/nph.v229.4
[37] Lu Y F, Hao S X, Liu N, Bu Y F, Yang S L, Yao Y C. Light affects anthocyanin biosynthesis via transcriptional regulation of COP1 in the ever-red leaves of crabapple M. cv. ‘Royalty’. Brazilian J Bot, 2016, 39: 659-667.
[38] Wu M, Si M, Li X Y, Song L Y, Liu J L, Zhai R, Cong L, Yue R R, Yang C Q, Ma F W, Xu L F, Wang Z G. PbCOP1.1 contributes to the negative regulation of anthocyanin biosynthesis in pear. Plants (Basel), 2019, 8: 39.
doi: 10.3390/plants8020039
[39] 蒋明敏. 光信号诱导茄子花青素合成的分子机制研究. 上海交通大学博士学位论文, 上海, 2016.
Jiang M M. The Molecular Mechanism of Light Signal Induced Anthocyanin Biosynthesis in Solanum melongena. PhD Dissertation of Shanghai Jiao Tong University, Shanghai, China, 2016 (in Chinese with English abstract).
[40] Hao X L, Zhong Y J, Nützmann H W, Fu X Q, Yan T X, Shen Q, Chen M H, Ma Y N, Zhao J Y, Osbourn A, Li L, Tang K X. Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant Cell Physiol, 2019, 60: 1747-1760.
doi: 10.1093/pcp/pcz084
[41] Rajeevan M S, Ranamukhaarachchi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25: 443-451.
pmid: 11846613
[42] 蒋可人, 马峥, 郑航, 刘小军. 转录组与蛋白质组整合分析在生物学研究中的应用. 生物技术通报, 2018, 34(12):50-55.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0929
Jiang K R, Ma Z, Zheng H, Liu X J. Review on the application of integrated transcriptome and proteome analysis in biology. Biotechnol Bull, 2018, 34(12):50-55 (in Chinese with English abstract).
[43] Liu Y S, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell, 2016, 165: 535-550.
doi: 10.1016/j.cell.2016.03.014
[44] Torii K U, McNellis T W, Deng X W. Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development. EMBO J, 1998, 17: 5577-5587.
pmid: 9755158
[45] Zhu D M, Maier A, Lee J H, Laubinger S, Saijo Y, Wang H Y, Qu L J, Hoecker U, Deng X W. Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell, 2008, 20: 2307-2323.
doi: 10.1105/tpc.107.056580
[46] Holm M, Hardtke C S, Gaudet R, Deng X W. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J, 2001, 20: 118-127.
pmid: 11226162
[47] Jang I C, Yang J Y, Seo H S, Chua N H. HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev, 2005, 19: 593-602.
doi: 10.1101/gad.1247205
[48] Huai J L, Jing Y J, Lin R C. Functional analysis of ZmCOP1 and ZmHY5 reveals conserved light signaling mechanism in maize and Arabidopsis. Physiol Plant, 2020, 169: 369-379.
[49] Liu B, Zuo Z C, Liu H T, Liu X M, Lin C T. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev, 2011, 25: 1029-1034.
doi: 10.1101/gad.2025011
[50] Liu H T, Liu B, Zhao C X, Pepper M, Lin C T. The action mechanisms of plant cryptochromes. Trends Plant Sci, 2011, 16: 684-691.
doi: 10.1016/j.tplants.2011.09.002
[51] 李仕铭, 周增, 涂敏, 叶肖肖, 林辰涛, 左泽乘. 拟南芥隐花色素CRY光信号通路的研究进展. 分子植物育种, 2018, 16: 4444-4452.
Li S M, Zhou Z, Tu M, Ye X X, Lin C T, Zuo Z C. Research progress of photosignal pathway of cryptochrome in Arabidopsis thaliana. Mol Plant Breed, 2018, 16: 4444-4452 (in Chinese with English abstract).
[52] 周婷婷. 甜高粱隐花色素CRYPTOCHROME 1a和CRYPTOCHROME 1b的功能、信号转导机制及胁迫响应分析. 吉林大学博士学位论文, 吉林长春, 2017.
Zhou T T. Function, Signaling Mechanism and Stress Response of the CRYPTOCHROME 1a and CRYPTOCHROME 1b in Sweet Sorghum. PhD Dissertation of Jilin University, Changchun, Jilin, China, 2017 (in Chinese with English abstract).
[53] Vogel C, Marcotte E M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet, 2012, 13: 227-232.
[54] Wang B B, Lin Z C, Li X, Zhao Y P, Zhao B B, Wu G X, Ma X J, Wang H, Xie Y R, Li Q Q, Song G S, Kong D X, Zheng Z G, Wei H B, Shen R X, Wu H, Chen C X, Meng Z D, Wang T Y, Li Y, Li X H, Chen Y H, Lai J S, Hufford M B, Ross-Ibarra J, He H, Wang H Y. Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet, 2020, 52: 565-571.
doi: 10.1038/s41588-020-0616-3
[55] Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A. Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics, 2009, 183: 1555-1563.
doi: 10.1534/genetics.109.106922
[56] Zhou Z Q, Zhang C S, Zhou Y, Hao Z F, Wang Z H, Zeng X, Di H, Li M S, Zhang D G, Yong H J, Zhang S H, Weng J F, Li X H. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. BMC Genom, 2016, 17: 178.
doi: 10.1186/s12864-016-2555-z
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[5] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[6] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[7] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!