作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1301-1311.doi: 10.3724/SP.J.1006.2022.13031
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
肖颖妮**(), 于永涛**, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科*(), 胡建广*()
XIAO Ying-Ni**(), YU Yong-Tao**, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke*(), HU Jian-Guang*()
摘要:
中国已经成为全球鲜食玉米最主要生产和消费国家之一, 解析我国鲜食玉米品种之间的遗传多样性和亲缘关系, 对品种鉴定和品种培育具有重要的指导意义。本研究利用Illumina Maize 6K芯片对全国范围内的385个鲜食玉米品种进行全基因组扫描, 了解群体结构, 划分种质类群, 估算品种间的遗传距离, 揭示其遗传多样性。结果表明, 5067个SNP标记在385个鲜食玉米品种中基因多样性平均0.406, 变幅为0.097~0.500; 多态信息含量(polymorphism information content, PIC)平均0.319, 变幅为0.092~0.375。通过PCA分析和群体遗传结构分析一致表明, 本研究所收集的品种主要划分为3个类群, 分别为糯玉米类群(糯玉米和甜糯玉米, 共185个品种)、温带甜玉米类群(123个品种)和热带甜玉米类群(77个品种)。两两品种间的遗传距离在0.132~0.472之间, 平均值为0.37。通过FST分析检测到不同类群间有160个区域受到强烈选择, 其中包括4个玉米籽粒淀粉合成途径的关键基因(sh2、su1、su2和wx1), 进一步利用分子标记验证了sh2和DGAT1-2两个位点在鲜食玉米群体不同选择模式。本研究为我国鲜食玉米品种选育和改良提供了重要的理论指导。
[1] | 汪黎明, 孙琦, 孟昭东, 张发军, 丁照华, 郭庆法. 我国鲜食玉米育种现状及进展分析. 玉米科学, 2005, 13(3):35-38. |
Wang L M, Sun Q, Meng Z D, Zhang F J, Ding Z H, Guo Q F. Analysis on fresh-eating maize breeding situation progress in China. J Maize Sci, 2005, 13(3):282-285 (in Chinese). | |
[2] | 胡建广, 王子明, 李余良, 刘建华. 我国甜玉米育种概况与发展方向. 玉米科学, 2004, 12(1):12-15. |
Hu J G, Wang Z M, Li Y L, Liu J H. General situation and development direction of sweet corn breeding in China. J Maize Sci, 2004, 12(1):12-15 (in Chinese with English abstract). | |
[3] | 赵久然, 卢柏山, 史亚兴, 徐丽. 我国糯玉米育种及产业发展动态. 玉米科学, 2016, 24(4):67-71. |
Zhao J R, Lu B S, Shi Y X, Xu L. Development trends of waxy corn breeding and industry in China. J Maize Sci, 2016, 24(4):67-71 (in Chinese with English abstract). | |
[4] | 郝小琴, 吴子恺. 双隐性甜糯玉米的主要农艺及品质性状. 作物学报, 2003, 29: 321-329. |
Hao X Q, Wu Z K. The major agronomic and quality characteristic in double recessive sweet-waxy maize. Acta Agron Sin, 2003, 29: 321-329 (in Chinese with English abstract). | |
[5] |
Wu X, Li Y, Shi Y, Song Y, Wang T, Huang Y, Li Y. Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor Appl Genet, 2014, 127: 621-631.
doi: 10.1007/s00122-013-2246-y |
[6] |
Liu C, Hao Z, Zhang D, Xie C, Li M, Zhang X, Yong H, Zhang S, Weng J, Li X. Genetic properties of 240 maize inbred lines and identity-by-descent segments revealed by high-density SNP markers. Mol Breed, 2015, 35: 146.
doi: 10.1007/s11032-015-0344-z |
[7] |
Zhang R, Xu G, Li J, Yan J, Li H, Yang X. Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theor Appl Genet, 2018, 131: 1207-1221.
doi: 10.1007/s00122-018-3072-z |
[8] | 赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊. 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018, 51: 626-634. |
Zhao J R, Li C H, Song W, Wang Y D, Zhang R Y, Wang J D, Wang F G, Tian H L, Wang R. Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-chips. Sci Agric Sin, 2018, 51: 626-634 (in Chinese with English abstract). | |
[9] | 卢柏山, 史亚兴, 宋伟, 徐丽, 赵久然. 利用SNP标记划分甜玉米自交系的杂种优势类群. 玉米科学, 2015, 23(1):58-62. |
Lu B S, Shi Y X, Song W, Xu L, Zhao J R. Heterotic grouping of sweet corn inbred lines by SNP markers. J Maize Sci, 2015, 23(1):58-62 (in Chinese with English abstract). | |
[10] | 李余良, 索海翠, 韩福光, 刘建华, 胡建广, 高磊, 李武. 基于SLAF-seq技术分析甜、糯玉米种质遗传多样性. 玉米科学, 2019, 27(4):71-78. |
Li Y L, Suo H C, Han F G, Liu J H, Hu J G, Gao L, Li W. Analysis of genetic diversity of sweet and wax corn germplasms using SLAF-seq technology. J Maize Sci, 2019, 27(4):71-78 (in Chinese with English abstract). | |
[11] |
卢媛, 艾为大, 韩晴, 王义发, 李宏杨, 瞿玉玑, 施标, 沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析. 作物学报, 2019, 45: 214-224.
doi: 10.3724/SP.J.1006.2019.83008 |
Lu Y, Ai W D, Han Q, Wang Y F, Li H Y, Qu Y J, Shi B, Shen X F. Genetic diversity and population structure analysis by SSR markers in waxy maize. Acta Agron Sin, 2019, 45: 214-224 (in Chinese with English abstract). | |
[12] | 王凤格, 田红丽, 赵久然, 王璐, 易红梅, 宋伟, 高玉倩, 杨国航. 中国328个玉米品种(组合) SSR标记遗传多样性分析. 中国农业科学, 2014, 47: 856-864. |
Wang F G, Tian H L, Zhao J R, Wang L, Yi H M, Song W, Gao Y Q, Yang G H. Genetic diversity analysis of 328 maize varieties (hybridized combinations) using SSR markers. Sci Agric Sin, 2014, 47: 856-864 (in Chinese with English abstract). | |
[13] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
pmid: 7433111 |
[14] |
Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129.
doi: 10.1093/bioinformatics/bti282 |
[15] |
Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015, 4: 7.
doi: 10.1186/s13742-015-0047-8 |
[16] |
Jakobsson M, Rosenberg N A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007, 23: 1801-1806.
doi: 10.1093/bioinformatics/btm233 pmid: 17485429 |
[17] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829 |
[18] |
Xiao Y, Yu Y, Li G, Xie L, Guo X, Li J, Li Y, Hu J. Genome-wide association study of vitamin E in sweet corn kernels. Crop J, 2020, 8: 341-350.
doi: 10.1016/j.cj.2019.08.002 |
[19] |
Chai Y, Hao X, Yang X, Allen W B, Li J, Yan J, Shen B, Li J. Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize. Mol Breed, 2011, 29: 939-949.
doi: 10.1007/s11032-011-9644-0 |
[20] |
Zheng P, Allen W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367-372.
doi: 10.1038/ng.85 |
[21] |
Zhang X, Zhang H, Li L, Lan H, Ren Z, Liu D, Wu L, Liu H, Jaqueth J, Li B, Pan G, Gao S. Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genom, 2016, 17: 697.
doi: 10.1186/s12864-016-3041-3 |
[22] | 史亚兴, 卢柏山, 宋伟, 徐丽, 赵久然. 基于SNP标记技术的糯玉米种质遗传多样性分析. 华北农学报, 2015, 30(3):77-82. |
Shi Y X, Lu B S, Song W, Xu L, Zhao J R. Genetic diversity analysis of waxy corn inbred lines by single nucleotide polymorphism (SNP) markers. Acta Agric Boreali-Occident Sin, 2015, 30(3):77-82 (in Chinese with English abstract). | |
[23] |
Hao D, Zhang Z, Cheng Y, Chen G, Lu H, Mao Y, Shi M, Huang X, Zhou G, Xue L. Identification of genetic differentiation between waxy and common maize by SNP genotyping. PLoS One, 2015, 10: e0142585.
doi: 10.1371/journal.pone.0142585 |
[24] |
Hu Y, Colantonio V, Müller B S F, Leach K A, Nanni A, Finegan C, Wang B, Baseggio M, Newton C, Juhl E, Hislop L, Gonzalez J, Rios E F, Hannah L C, Swarts K, Michael G, Hennen-Bierwagen T A, Myers A M, Settles A M, Tracy W F, Resende Jr M F R. Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nat Commun, 2021, 12: 1227.
doi: 10.1038/s41467-021-21380-4 |
[25] |
Fang H, Fu X, Wang Y, Xu J, Feng H, Li W, Xu J, Jittham O, Zhang X, Zhang L, Yang N, Xu G, Wang M, Li X, Li J, Yan J, Yang X. Genetic basis of kernel nutritional traits during maize domestication and improvement. Plant J, 2020, 101: 278-292.
doi: 10.1111/tpj.14539 |
[26] | Baseggio M, Murray M, Magallanes-Lundback M, Kaczmar N, Chamness J, Buckler E S, Smith M E, DellaPenna D, Tracy W F, Gore M A. Genome-wide association and genomic prediction models of tocochromanols in fresh sweet corn kernels. Plant Genom, 2019, 12: 1-17. |
[27] | Lipka A E, Gore M A, Magallanes-Lundback M, Mesberg A, Lin H, Tiede T, Chen C, Buell C R, Buckler E S, Rocheford T, Dellapenna D. Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain. G3: Genes Genom Genet, 2013, 3: 1287-1299. |
[28] | Brewbaker J L, Martin I, Plant Breeding Reviews. Westport: John Wiley & Sons, Inc Press, 2015. pp 125-198. |
[29] |
Feng F, Wang Q, Liang C, Yang R, Li X. Enhancement of tocopherols in sweet corn by marker-assisted backcrossing of ZmVTE4. Euphytica, 2015, 206: 513-521.
doi: 10.1007/s10681-015-1519-8 |
[30] |
Yang R, Yan Z, Wang Q, Li X, Feng F. Marker-assisted backcrossing of lcyE for enhancement of proA in sweet corn. Euphytica, 2018, 214: 130.
doi: 10.1007/s10681-018-2212-5 |
[1] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[2] | 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370. |
[3] | 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49. |
[4] | 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724. |
[5] | 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340. |
[6] | 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314. |
[7] | 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188. |
[8] | 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203. |
[9] | 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224. |
[10] | 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521. |
[11] | 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36. |
[12] | 白冬梅,薛云云,赵姣姣,黄莉,田跃霞,权宝全,姜慧芳. 山西花生地方品种芽期耐寒性鉴定及SSR遗传多样性[J]. 作物学报, 2018, 44(10): 1459-1467. |
[13] | 魏中艳, 李慧慧, 李骏, YasirA.Gamar, 马岩松, 邱丽娟. 应用SNP精准鉴定大豆种质及构建可扫描身份证[J]. 作物学报, 2018, 44(03): 315-323. |
[14] | 余斌,杨宏羽,王丽,刘玉汇,白江平,王蒂,张俊莲. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价[J]. 作物学报, 2018, 44(01): 63-74. |
[15] | 万雪贝,李东旭,徐益,徐建堂,张力岚,张列梅,林荔辉,祁建民,张立武. 红麻EST-SSR标记的开发及其多态性评价[J]. 作物学报, 2017, 43(08): 1170-1180. |
|