欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1176-1188.doi: 10.3724/SP.J.1006.2019.84155

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

绿豆SSR标记的开发及遗传多样性分析

叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌()   

  1. 安徽省农业科学院作物研究所, 安徽合肥 230031
  • 收稿日期:2018-11-21 接受日期:2019-01-19 出版日期:2019-08-12 网络出版日期:2019-03-16
  • 通讯作者: 周斌
  • 作者简介:叶卫军, E-mail: 963472965@163.com|陈圣男, E-mail: chensn1226@163.com
  • 基金资助:
    本研究由安徽省农业科学院科研项目(18T0206);国家现代农业产业技术体系建设专项(CARS-08-Z11);国家重点研发计划项目资助(2016YFE0203800)

Development of SSR markers and genetic diversity analysis in mung bean

YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin()   

  1. Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
  • Received:2018-11-21 Accepted:2019-01-19 Published:2019-08-12 Published online:2019-03-16
  • Contact: Bin ZHOU
  • Supported by:
    This study was supported by the Research Program of Anhui Academy of Agricultural Sciences(18T0206);the China Agriculture Research System(CARS-08-Z11);the National Key Research and Development Program(2016YFE0203800)

摘要:

SSR标记以其数量丰富、多态性好、共显性遗传等优点在基础研究和育种工作中发挥了重要作用, 但目前绿豆基因组中的SSR标记依然较少。本研究将磁珠富集法和测序技术相结合高通量检测绿豆基因组SSR位点, 鉴定出3,275,355个SSR位点, 开发了2742个SSR标记。选取其中157个SSR进行PCR验证, 发现有90个(57.33%)标记在10份材料中表现出多态性。挑选40个条带清晰、多态性高、染色体上均匀分布的标记对90份绿豆资源进行遗传多样性分析, 单个位点检测到的等位变异数为2~8个, 平均为3.0个, 有效等位基因数为1.31~4.21个, 平均为2.16。Nei’s基因多样性指数在0.23~0.76之间, 平均为0.51。多态性信息含量为0.22~0.72, 平均为0.43。聚类分析将90份材料分为2个类群, 包含4个组。第I组主要由北方资源组成, 第II组种质来源较为分散, 第III组主要由山东的资源构成, 第IV组包含多数河北的种质资源。本研究开发的多态性SSR标记不仅可以用于绿豆种质资源的遗传多样性分析, 也将在高密度遗传图谱构建、基因定位和分子标记辅助育种中发挥重要作用。

关键词: 绿豆, 测序, SSR, 引物设计, 遗传多样性

Abstract:

SSR markers play an important role in basic research and crop breeding due to their advantages of large number, high polymorphism and co-dominant inheritance. However, there are still few SSR markers available in mung bean. In this study, the magnetic bead enrichment method and sequencing technology were combined to identify the SSR loci of mung bean in high throughput, a total of 3,275,355 SSR loci were found, and 2742 markers were developed. A total of 157 markers were selected for validation by PCR method, 90 (57.33%) showed polymorphic among 10 mung bean accessions. Forty SSR markers with clear PCR products, high polymorphism and uniform distribution on chromosomes were selected to evaluate the genetic diversity among 90 mung bean accessions. The number of alleles per marker varied from two to eight, with an average of three. The effective number of alleles ranged from 1.31 to 4.21, with a mean value of 2.16. The Nei’s gene diversity was between 0.23 and 0.76, with an average of 0.51. Polymorphism information content was between 0.22 and 0.72, with a mean of 0.43. Cluster analysis distributed 90 materials into two clusters, including four groups. The germplasm of group II came from several areas, while those of groups I and III were mainly from North China and Shandong province, respectively. Most of the gerplasm from Hebei province were clustered in Group IV. These polymorphic SSR markers will be valuable for genetic diversity analysis, high-resolution genetic linkage maps construction, gene mapping and marker assisted selection in mung bean breeding.

Key words: mung bean, sequencing, SSR, primer design, genetic diversity

表1

供试绿豆材料信息"

编号
No.
名称
Name
来源地
Origin
编号
No.
名称
Name
来源地
Origin
编号
No.
名称
Name
来源地
Origin
1 安阳01-2 河南 31 科绿1号 内蒙古 61 潍绿11 山东
Anyang 01-2 Henan Kelyu 1 Inner Mongolia Weilyu 11 Shandong
2 白绿10号 吉林 32 辽绿10L708-5 辽宁 62 潍绿12 山东
Bailyu 10 Jilin Liaolyu 10L708-5 Liaoning Weiyu 12 Shandong
3 白绿11号 吉林 33 辽绿10号 辽宁 63 潍绿4号 山东
Bailyu 11 Jilin Liaolyu 10 Liaoning Weilyu 4 Shandong
4 白绿9号 吉林 34 庐绿2号 安徽 64 潍绿5号 山东
Bailyu 9 Jilin Lulyu 2 Anhui Weilyu 5 Shandong
5 宝绿1号 河北 35 嫩绿2号 黑龙江 65 潍绿7号 山东
Baolyu 1 Hebei Neilyu 2 Heilongjiang Weilyu 7 Shandong
6 保942 河北 36 品绿08116 北京 66 潍绿8号 山东
Bao 942 Hebei Pinlyu 08116 Beijing Weilyu 8 Shandong
7 保绿200403 河北 37 品绿2011-06 北京 67 潍绿9号 山东
Baolyu 200403 Hebei Pinlyu 2011-06 Beijing Weilyu 9 Shandong
8 保绿200520 河北 38 品绿2011-12 北京 68 鹦哥绿 河北
Baolyu 200520 Hebei Pinlyu 2011-12 Beijing Yinggelyu Hebei
9 保绿200621 河北 39 品绿21599 北京 69 渝黑绿3号 重庆
Baolyu 200621 Hebei Pinlyu 21599 Beijing Yuheilyu 3 Chongqing
10 保绿200810 河北 40 苏抗4号 江苏 70 渝绿2号 重庆
Baolyu 200810 Hebei Sukang 4 Jiangsu Yulyu 2 Chongqing
11 保绿201012-7 河北 41 苏黑2号 江苏 71 郑绿10号 河南
Baolyu 201012-7 Hebei Suhei 2 Jiangsu Zhenglyu 10 Henan
12 鄂1001 湖北 42 苏抗1号 江苏 72 郑绿8号 河南
E 1001 Hebei Sukang 1 Jiangsu Zhenglyu 8 Henan
13 鄂绿5号 湖北 43 苏抗3号 江苏 73 中绿10号 北京
Elyu 5 Hubei Sukang 3 Jiangsu Zhonglyu 10 Beijing
14 皇藏峪绿豆 安徽 44 苏绿11-4 江苏 74 中绿11号 北京
Huangcangyu mungbean Anhui Sulyu 11-4 Jiangsu Zhonglyu 11 Beijing
15 吉林绿豆 吉林 45 苏绿12-5 江苏 75 中绿12号 北京
Jilin mung bean Jilin Sulyu 12-5 Jiangsu Zhonglyu 12 Beijing
16 吉绿5号 吉林 46 苏绿15-11 江苏 76 中绿14号 北京
Jilyu 5 Jilin Sulyu 15-11 Jiangsu Zhonglyu 14 Beijing
17 吉绿6号 吉林 47 苏绿16-10 江苏 77 中绿1号 北京
Jilyu 6 Jilin Sulyu 16-10 Jiangsu Zhonglyu 1 Beijing
18 冀黑绿45-1 河北 48 苏绿1号 江苏 78 中绿3号 北京
Jiheilyu 45-1 Hebei Sulyu 1 Jiangsu Zhonglyu 3 Beijing
19 冀绿0204 河北 49 苏绿2号 江苏 79 中绿5号 北京
Jilyu 0204 Hebei Sulyu 2 Jiangsu Zhonglyu 5 Beijing
20 冀绿0514 河北 50 苏绿4号 江苏 80 中绿8号 北京
Jilyu 0514 Hebei Sulyu 4 Jiangsu Zhonglyu 8 Beijing
21 冀绿0816 河北 51 太原06-2 山西 81 明绿1号 安徽
Jilyu 0816 Hebei Taiyuan 06-2 Shanxi Minglyu 1 Anhui
22 冀绿10号 河北 52 太原52 山西 82 明绿2号 安徽
Jilyu 10 Hebei Taiyuan 52 Shanxi Minglyu 2 Anhui
23 冀绿11号 河北 53 太原VC3061A 山西 83 明绿3号 安徽
Jilyu 11 Hebei Taiyuan VC3061A Shanxi Minglyu 3 Anhui
24 冀绿7号 河北 54 太原VC4503B 山西 84 明绿4号 安徽
Jilyu 7 Hebei Taiyuan VC4503B Shanxi Minglyu 4 Anhui
25 冀绿8号 河北 55 太原串辐 山西 85 明绿5号 安徽
Jilyu 8 Hebei Taiyuanchuanfu Shanxi Minglyu 5 Anhui
26 冀绿9号 河北 56 太原早-1 山西 86 明绿7号 安徽
Jilyu 9 Hebei Taiyuanzao-1 Shanxi Minglyu 7 Anhui
27 晋绿1号 山西 57 太原早-2 山西 87 明绿8号 安徽
Jinlyu 1 Shanxi Taiyuanzao-2 Shanxi Minglyu 8 Anhui
28 晋绿3号 山西 58 同1188326 山西 88 明绿9号 安徽
Jinlyu 3 Shanxi Tong 1188326 Shanxi Minglyu 9 Anhui
29 晋绿4号 山西 59 宛绿2号 河南 89 皖科绿1号 安徽
Jinlyu 4 Shanxi Wanlyu 2 Henan Wankelyu 1 Anhui
30 晋绿6号 山西 60 潍绿05-8 山东 90 皖科绿3号 安徽
Jinlyu 6 Shanxi Weilyu 05-8 Shandong Wankelyu 3 Anhui

图1

SSR的类型和频率分布 A: 不同类型SSR的分布频率, Momo-、Di-、Tri-、Tetra-、Penta-、Hexa-分别代表单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸和六核苷酸重复; B~G: 单核苷酸(B)、二核苷酸(C)、三核苷酸(D)、四核苷酸(E)、五核苷酸(F)和六核苷酸(G)的重复类型及频率。"

表2

SSR长度多态性评估"

SSR长度多态性
SSR length
polymorphism
聚类数量
No. of clusters
比例
Percentage (%)
设计引物数量
No. of designed primers
1 492,264 92.15
2 33,893 6.34 1920
3 5422 1.01 538
4 1604 0.30 172
5 573 0.11 65
6 231 0.04 28
7 101 0.02 10
8 51 0.01 3
9 29 0.01 2
≥10 41 0.01 4
合计Total 534,209 100.00 2742

Table 3

Information of 90 polymorphic SSR markers"

图2

设计引物的验证分析 A: 157对引物PCR结果的统计分析; B: 11条染色体上的引物扩增情况。MSP表示多态性扩增的标记, MSN表示可扩增出目的条带但无多态性的标记, MNN表示非特异性扩增或无扩增产物的标记。"

表4

40对SSR引物的信息"

引物名称
Name
等位基因数
Allele number
有效等位基因数
Effective number of allele
多态性信息含量
Polymorphism information content
Nei’s基因多样性
Nei’s gene diversity
Vr1-1 2 1.91 0.36 0.48
Vr1-5 4 2.73 0.58 0.64
Vr1-7 3 1.66 0.37 0.41
Vr1-8 3 1.72 0.38 0.43
Vr1-9 3 2.71 0.56 0.63
Vr2-2 3 2.20 0.45 0.54
Vr2-6 3 1.81 0.41 0.46
Vr2-8 3 2.10 0.44 0.52
Vr3-2 5 4.21 0.72 0.76
Vr3-3 3 2.12 0.43 0.53
Vr3-9 3 2.37 0.51 0.58
Vr3-10 3 1.71 0.35 0.40
Vr4-4 3 2.66 0.54 0.62
Vr4-7 2 1.91 0.36 0.48
Vr5-3 3 2.54 0.54 0.61
Vr5-4 4 3.27 0.64 0.69
Vr5-5 2 1.91 0.36 0.47
Vr5-6 3 2.88 0.58 0.65
Vr6-4 3 1.89 0.39 0.46
Vr6-7 2 1.67 0.31 0.39
Vr6-9 2 1.41 0.24 0.28
Vr6-10 2 1.82 0.34 0.44
Vr6-12 2 1.97 0.37 0.49
Vr7-5 2 1.67 0.33 0.41
Vr7-12 2 1.92 0.37 0.48
Vr7-14 3 2.05 0.43 0.51
Vr7-17 2 1.72 0.33 0.41
引物名称
Name
等位基因数
Allele number
有效等位基因数
Effective number of allele
多态性信息含量
Polymorphism information content
Nei’s基因多样性
Nei’s gene diversity
Vr7-20 2 1.72 0.33 0.41
Vr7-25 2 1.75 0.34 0.43
Vr8-3 3 2.13 0.42 0.53
Vr8-4 3 1.31 0.22 0.23
Vr8-14 3 2.54 0.52 0.60
Vr9-3 2 1.80 0.35 0.45
Vr9-14 4 2.21 0.51 0.55
Vr10-7 5 2.78 0.58 0.64
Vr10-9 4 3.29 0.64 0.69
Vr10-17 3 1.47 0.30 0.34
Vr11-4 8 3.25 0.64 0.69
Vr11-9 3 2.08 0.43 0.51
Vr11-10 3 1.51 0.30 0.35
平均Mean 3 2.16 0.43 0.51

图3

根据Nei’s遗传距离的绿豆资源UPGMA聚类图 1~90为表1中供试绿豆编号。"

[1] 程须珍, 王述民 . 中国食用豆类品种志. 北京: 中国农业科学技术出版社, 2009. pp 19-20.
Cheng X Z, Wang S M. Chinese Legumes Variety Pictorial. Beijing: China Agricultural Science and Technology Press, 2009. pp 19-20(in Chinese).
[2] Fuller D Q, Harvey E L . The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environ Archaeol, 2006,11:219-246.
doi: 10.1179/174963106x123232
[3] Nair R M, Schafleitner R, Kenyon L, Srinivasan R, Easdown W, Ebert A W, Hanson P . Genetic improvement of mung bean. SABRAO J Breed Genet, 2012,44:177-190.
[4] 郑卓杰, 王述民, 宗绪晓 . 中国食用豆类学. 北京: 中国农业出版社, 1997. pp 3-6.
Zheng Z J, Wang S M, Zong X X. Food Legumes in China. Beijing: China Agriculture Press, 1997. pp 3-6(in Chinese).
[5] 王丽侠, 程须珍, 王素华 . 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009,42:1519-1527.
Wang L X, Cheng X Z, Wang S H . Advances in research on genetic resources, breeding and genetics of mung bean (Vigna radiata L.). Sci Agric Sin, 2009,42:1519-1527 (in Chinese with English abstract).
[6] 程须珍, 王素华 . 中国绿豆产业发展及科技应用. 北京: 中国农业科学技术出版社, 2002. pp 3-8.
Cheng X Z, Wang S H. Indusdustrial Development and Technology Utilization of Mungbean in China. Beijing: China Agricultural Science and Technology Press, 2002. pp 3-8(in Chinese).
[7] Kang Y J, Kim S K, Kim M Y, Lestari P, Kim K H, Ha B K, Jun T H, Hwang W J, Lee T, Lee J, Shim S, Yoon M Y, Jang Y E, Han K S, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim K S, Gwag J G, Moon J K, Lee Y H, Park B S, Bombarely A, Doyle J J, Jackson S A, Schafleitner R, Srinives P, Varshney R K, Lee S H . Genome sequence of mung bean and insights into evolution within Vigna species. Nat Commun, 2014,5:5443, doi: 10.1038/ ncomms6443.
[8] 刘岩, 程须珍, 王丽侠, 王素华, 白鹏, 吴传书 . 基于SSR标记的中国绿豆种质资源遗传多样性研究. 中国农业科学, 2013,46:4197-4209.
Liu Y, Cheng X Z, Wang L X, Wang S H, Bai P, Wu C S . Genetic diversity research of mungbean germplasm resources by SSR markers in China. Sci Agric Sin, 2013,46:4197-4209 (in Chinese with English abstract).
[9] 任红晓, 程须珍, 徐东旭, 高运青, 尚启兵 . 应用SSR标记分析中国北方名优绿豆的遗传多样性. 植物遗传资源学报, 2015,16:395-399.
Ren H X, Cheng X Z, Xu D X, Gao Y Q, Shang Q B . Genetic diversity of traditional mungbean varieties in northern China by SSR markers. J Plant Genet Resour, 2015,16:395-399 (in Chinese with English abstract).
[10] 赵丹, 程须珍, 王丽侠, 王素华, 马燕玲 . 绿豆遗传连锁图谱的整合. 作物学报, 2010,36:932-939.
Zhao D, Cheng X Z, Wang L X, Wang S H, Ma Y L . Integration of mungbean (Vigna radiata) genetic linkage map. Acta Agron Sin, 2010,36:932-939 (in Chinese with English abstract).
[11] Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Jo U, Vaughan D A, Tomooka N . Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS One, 2012,7:e41304.
[12] 王建花, 张耀文, 程须珍, 王丽侠 . 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析. 作物学报, 2017,43:1096-1102.
Wang J H, Zhang Y W, Cheng X Z, Wang L X . Construction of genetic map and identification of QTLs related to agronomic traits in mung bean. Acta Agron Sin, 2017,43:1096-1102 (in Chinese with English abstract).
[13] 王丽侠, 程须珍, 王素华, 刘长友, 梁辉 . 小豆SSR引物在绿豆基因组中的通用性分析. 作物学报, 2009,35:816-820.
Wang L X, Cheng X Z, Wang S H, Liu C Y, Liang H . Transferability of SSR from adzuki bean to mungbean. Acta Agron Sin, 2009,35:816-820 (in Chinese with English abstract).
[14] 钟敏, 程须珍, 王丽侠, 王素华, 王小宝 . 绿豆基因组SSR引物在豇豆属作物中的通用性. 作物学报, 2012,38:223-230.
Zhong M, Cheng X Z, Wang L X, Wang S H, Wang X B . Transferability of mungbean genomic-SSR markers in other vigna species. Acta Agron Sin, 2012,38:223-230 (in Chinese with English abstract).
[15] Kumar S V, Tan S G, Quah S C, Yusoff K . Isolation and characterization of seven tetranucleotide microsatellite loci in mungbean, Vigna radiata. Mol Ecol Notes, 2002,2:293-295.
[16] Miyagi M, Humphry M, Ma Z Y, Lambrides C J, Bateson M, Liu C J . Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mung bean (Vigna radiata L. Wilczek). Theor Appl Genet, 2004,110:151-156.
[17] Gwag J G, Chung J W, Chung H K, Lee J H, Ma K H . Characterization of new microsatellite markers in mungbean, Vigna radiata(L.). Mol Ecol Notes, 2006,6:1132-1134.
[18] Somta P, Musch W, Kongsamai B, Chanprame S, Nakasatien S, Toojinda T, Sorajjapinun W, Seehalak W, Tragoonrung S, Srinives P . New microsatellite markers isolated from mungbean (Vigna radiata(L.) Wilczek). Mol Ecol Resour, 2008,8:1155-1157.
[19] Seehalak W, Somta P, Sommanas W, Srinives P . Microsatellite markers for mungbean developed from sequence database. Mol Ecol Resour, 2009,9:862-864.
doi: 10.1111/men.2009.9.issue-3
[20] Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P . Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata(L.) Wilczek). BMC Plant Biol, 2009,9:137, doi: 10.1186/1471- 2229-9-137.
[21] Somta P, Seehalak W, Srinives P . Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet, 2009,10:1939-1943.
[22] Wang L X, Elbaidouri M, Abernathy B, Chen H L, Wang S H, Lee S H, Jackson S A, Cheng X Z . Distribution and analysis of SSR in mung bean (Vigna radiata L.) genome based on an SSR- enriched library. Mol Breed, 2015,35:25, doi: 10.1007/s11032- 015-0259-8.
[23] Chen H L, Wang L X, Wang S H, Liu C Y, Blair M W, Cheng X Z . Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. PLoS One, 2015,10:e0120273.
[24] Liu C Y, Fan B J, Cao Z M, Su Q Z, Wang Y, Zhang Z X, Wu J, Tian J . A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). J Genet, 2016,95:527-535.
[25] 孙子奎, 陈永灿 . 一种基于磁珠富集法高通量开发基因组SSR标记的方法. 中国专利, 2014,ZL201310222359. 9.
Sun Z K, Chen Y C . A method of developing genome SSR markers based on magnetic bead enrichment for NGS, China patent, 2014,ZL201310222359. 9.
[26] Lindgreen S . AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res Notes, 2012,5:337, doi: 10.1186/ 1756-0500-5-337.
doi: 10.1186/1756-0500-5-337
[27] Magoč T, Salzberg S L . FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011,27:2957-2963.
doi: 10.1093/bioinformatics/btr507
[28] Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B C, Remm M, Rozen S G . Primer3: new capabilities and interfaces. Nucl Acids Res, 2012,40:e115.
doi: 10.1093/nar/gks596
[29] Krawczak M, Nikolaus S, von Eberstein H, Croucher P J, El Mokhtari N E, Schreiber S . PopGen: population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships. Commun Genet, 2006,9:55-61.
[30] Liu K, Muse S V . PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21:2128-2129.
doi: 10.1093/bioinformatics/bti282
[31] 吴传书 . 绿豆SSR标记的开发及高密度分子遗传连锁图谱的构建. 甘肃农业大学硕士学位论文, 甘肃兰州, 2014.
Wu C S . Development of SSR Markers and Construction of a Genetic Linkage Map in Mungbean (Vigan radiate L.). MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2014 (in Chinese with English abstract).
[32] Gupta S K, Bansal R, Gopalakrishna T . Development and characterization of genic SSR markers for mungbean (Vigna radiata(L.) Wilczek). Euphytica, 2014,195:245-258.
[33] Yang T, Bao S Y, Ford R, Jia T J, Guan J P, He Y H, Sun X L, Jiang J Y, Hao J J, Zhang X Y, Zong X X . High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genomics, 2012,13:602, doi: 10.1186/1471-2164-13-602.
doi: 10.1186/1471-2164-13-602
[34] Gao L F, Tang J F, Li H W, Jia J Z . Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003,12:245-261.
doi: 10.1023/A:1026346121217
[35] Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P . Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet, 2004,109:800-805.
doi: 10.1007/s00122-004-1685-x
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[3] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[4] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[10] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[11] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[12] 胡冬秀, 刘浩, 洪彦彬, 梁炫强, 陈小平. 花生荚果发育过程中的microRNA鉴定与表达分析[J]. 作物学报, 2021, 47(4): 613-625.
[13] 杨阳, 李淮琳, 胡利民, 范楚川, 周永明. 白菜型油菜srb多室性状的遗传分析与分子鉴定[J]. 作物学报, 2021, 47(3): 385-393.
[14] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[15] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!