欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 920-929.doi: 10.3724/SP.J.1006.2022.14065

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究

张霞(), 于卓, 金兴红, 于肖夏*(), 李景伟, 李佳奇   

  1. 内蒙古农业大学农学院, 内蒙古呼和浩特 010019
  • 收稿日期:2021-04-18 接受日期:2021-07-12 出版日期:2022-04-12 网络出版日期:2021-08-06
  • 通讯作者: 于肖夏
  • 作者简介:E-mail: 1309165565@qq.com
  • 基金资助:
    内蒙古自治区科技重大专项(ZDZX2018019);内蒙古农业大学科技成果转化专项资金动植物品种培育项目(YZGC2017006);内蒙古自治区马铃薯种业技术创新中心项目资助

Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials

ZHANG Xia(), YU Zhuo, JIN Xing-Hong, YU Xiao-Xia*(), LI Jing-Wei, LI Jia-Qi   

  1. Agronomy College, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2021-04-18 Accepted:2021-07-12 Published:2022-04-12 Published online:2021-08-06
  • Contact: YU Xiao-Xia
  • Supported by:
    Inner Mongolia Major Science and Technology Project(ZDZX2018019);Animal and Plant Breeding Project for Transformation of Scientific Achievements in Inner Mongolia Agricultural University(YZGC2017006);Project of Inner Mongolia Potato Seed Industry and Technology Innovation Centre

摘要:

彩色马铃薯较普通栽培马铃薯具有更丰富的营养物质, 特别是富含抗氧化物质花青素, 是近年来育种家研究的焦点。迄今为止开发的马铃薯SSR引物数量有限, 特别是彩薯相关的SSR引物。本研究基于马铃薯全基因组序列利用MISA软件对SSR位点进行了分析。研究发现, 在马铃薯全基因组序列中共获得218,997个SSR位点, 平均3.39 kb出现一个SSR位点。单核苷酸是主要重复类型, 占总SSR的62.05%, 其次是二核苷酸和三核苷酸, 所占比例为22.39%和13.11%。6种核苷酸类型的重复次数分布在5~746次, 以5~10次为主, 占总SSR的60.9%。在检测到的全部SSR中, 共获得215种基元类型, 除六核苷酸重复类型外, 其他5种核苷酸重复类型的优势基元均以含有A/T-的基序为主。SSR基序长度主要分布在12~20 bp之间, 占全部SSR的43.19%。通过Primer 5共设计出100对SSR引物, 利用彩薯双亲的DNA初步筛选出48对可以扩增出条带的引物, 有效扩增率达48%。进一步验证引物的有效性, 随机选择F2群体的6个单株进行PCR扩增, 筛选出条带清晰稳定, 多态性较高的引物26对, 平均多态性比率为72.52%。本研究结果表明马铃薯全基因组SSR位点数量丰富、类型多样, 具有中等的多态性。开发的引物多态性较高, 可用于彩色马铃薯SSR标记的开发, 遗传多样性分析和指纹图谱构建等方面的研究, 为进一步挖掘花青素含量相关基因提供科学依据。

关键词: 马铃薯基因组, 彩色马铃薯, SSR, 引物开发

Abstract:

Compared with commonly cultivated potato, colored potato is rich in nutrition, especially in anthocyanins, which is the focus of breeding research in recent years. To date, the number of potato SSR primers developed is limited, especially those related to colored potato. In this study, SSR loci were analyzed using MISA software based on the whole genome. The results were as follows: a total of 218,997 SSR loci were obtained from potato genome with an average of 3.39 kb. Mononucleotide was the main repeat type, accounting for 62.05% of the total SSR, followed by dinucleotide and trinucleotide, accounting for 22.39% and 13.11%, respectively. The repeats of the six nucleotide types ranged from 5 to 746, mainly from 5 to 10, accounting for 60.9% of the total SSRs. A total of 215 motif types were obtained in all detected SSRs. The dominant motifs of the other five nucleotide repeat types were mainly A/T-containing motifs, except for hexanucleotide repeat type. The length of SSR motifs ranged from 12 bp to 20 bp, accounting for 43.19% of all SSRs. A total of 100 SSR primers were designed by Primer 5 software, among which 48 primers were preliminarily screened using parents’ genomic DNA of the colored potato, with an effective amplification rate of 48%. Then, six F2 individuals were randomly selected for PCR amplification, and 26 primers with clear and stable bands and high polymorphism were finely screened, with the average polymorphism rate of 72.52%. In summary, the number and types of SSR loci in potato genome was abundant and diverse, and the polymorphism was moderate. The developed primers were highly polymorphic, which can be used in the development of SSR markers, genetic diversity analysis, and SSR fingerprint of colored potato, providing a scientific basis for further mining genes related to anthocyanin content.

Key words: potato genome, colored potato, SSR, primer development

表1

各分离单株及亲本的块茎表型特征和花青素含量"

材料
Material
表皮光滑度
Epidermal smoothness
薯形
Tuber shape
皮色
Skin color
肉色
Tuber flesh color
花青素含量
Anthocyanidin (mg kg-1)
单株个体1 Individual 1 光滑 Smooth 长椭圆 Long oval 红色 Red 红中嵌白 White in red 33.84
单株个体2 Individual 2 光滑 Smooth 长圆 Long circle 紫色 Purple 紫黑色 Purple black 182.39
单株个体3 Individual 3 细纹 Fine grain 长圆 Long circle 红色 Red 浅红色 Light red 65.96
单株个体4 Individual 4 光滑 Smooth 椭圆 Oval 紫色 Purple 紫色 Purple 122.68
单株个体5 Individual 5 光滑 Smooth 长椭圆 Long oval 紫黑色 Purple black 紫中嵌白 White in purple 79.09
单株个体6 Individual 6 细纹 Fine grain 椭圆 Oval 红色 Red 黄中嵌红 Red in yellow 5.38
♂黑美人 Heimeiren 光滑 Smooth 长椭圆 Long oval 紫色 Purple 紫色 Purple 114.23
♀Red-P1 细纹 Fine grain 椭圆 Oval 红色 Red 浅红色 Light red 63.32

图1

6个F2单株及其亲本的基因组DNA纯度电泳检测 M: DNA marker DL2000; P1: 父本黑美人; P2: 母本Red-P1; 1~6: 6个F2代单株。"

表2

马铃薯全基因组SSR位点搜索结果"

项目 Item 数量 Number
检测序列的总碱基数
Total size of examined sequences (bp)
741,585,035
检测到SSR数目
Total number of identified SSRs
218,997
复合型SSR位点
Number of SSRs present in compound formation
30,404
复合SSR位点间最大间隔碱基数
Maximum number of bases interrupting 2 SSRs in a compound microsatellite (bp)
100

表3

马铃薯SSR的重复类型、重复次数及比例"

重复类型
Repeat type
重复次数Repeat number 合计
Total
比例
Proportion (%)
5 6 7 8 9 10 >10
单核苷酸 Mononucleotide 67,672 68,208 135,880 62.05
二核苷酸 Dinucleotide 13,755 7439 5404 4083 3201 15,147 49,029 22.39
三核苷酸 Trinucleotide 14,007 6164 3087 1671 1057 737 1997 28,720 13.11
四核苷酸 Tetranucleotide 1312 346 140 41 35 27 55 1956 0.89
五核苷酸 Pentanucleotide 450 99 39 14 9 10 9 630 0.29
六核苷酸 Hexanucleotide 1283 584 341 169 115 73 217 2782 1.27
总计 Total 17,052 20,948 11,046 7299 5299 71,720 85,633 218,997
比例 Proportion (%) 7.79 9.57 5.04 3.33 2.42 32.75 39.10 100.00

表4

马铃薯全基因组中不同SSR重复单元基元类型及比例"

重复类型
Repeat type
基元类型数量
Number of motif types
主要重复基元
Main repeat motif
出现数量
Occurrence number
占本重复基元百分比
Percentage of predominant motifs (%)
单核苷酸
Mononucleotide
2 A/T
C/G
124,164
11,716
91.38
8.62
二核苷酸
Dinucleotide
4 AT/AT
AG/CT
AC/GT
CG/CG
39,770
5655
3574
30
81.12
11.53
7.29
0.06
三核苷
Trinucleotide
10 AAT/ATT
AAG/CTT
AAC/GTT
AGG/CCT
其他 Others
12,302
8857
3751
1514
2296
42.83
30.84
13.06
5.27
8.00
四核苷酸
Tetranucleotide
30 AAAT/ATTT
AGAT/ATCT
ACAT/ATGT
AATT/AATT
其他 Others
899
258
152
132
515
45.96
13.19
7.77
6.75
26.33
五核苷酸
Pentanucleotide
49 AATAT/ATATT
AAAAT/ATTTT
AACTC/AGTTG
AATAC/ATTGT
其他 Others
206
91
81
49
203
32.70
14.44
12.86
7.78
32.22
六核苷酸
Hexanucleotide
120 AGGCCC/CCTGGG
AACTTG/AAGTTC
AGGCCT/AGGCCT
AAGAGG/CCTCTT
其他 Others
760
552
408
264
798
27.32
19.84
14.67
9.49
28.68

图2

马铃薯基因组SSR长度分布"

表5

开发的彩色马铃薯SSR引物序列"

引物名称
Primer name
序列
Primer sequence (5'-3')
重复基元
Repeat motif
退火温度
Tm (℃)
多态性比率
Percentage of polymorphic loci (%)
Z-1 F: CGACGCCAAAGTTAGCCA
R: GTCCCCAGAAGCCAAGAG
(GTT)7 57 50.00
Z-2 F: TTTCTGTGCTTCTTGCTCCTC
R: GTATCGCCCTCAGCCTTG
(TTC)6 57 100.00
Z-3 F: GAAGCGAGAAAAGCAGCAC
R: CCAGGGCAAAGGAAAACA
(TTC)6 57 66.67
Z-4 F: CTCCGTTTCCCAAGCCCTAA
R: GTCACCGTCCTCGTCATCG
(CCA)5 58 42.86
Z-5 F: GGAAATGGTCTGAAATGC
R: TGGTGGTGGACTACTTGG
(ACA)8 51 77.78
Z-6 F: CTCCCACCACTCCCTTAT
R: TCGTCATCACCATCTTCG
(TGA)5 54 85.71
Z-7 F: CACATTTGCCCACTCCTG
R: CATCCCCTCTTCCACCTC
(GAT)8 55 71.43
Z-8 F: AGCGTGAAATGAATGGAC
R: CAAATACGAGGCGAAACT
(AT)10 51 100.00
Z-9 F: CCTTGAATCCGAGCAGAAAT
R: TGGCACTCCACAGGGAATAG
(CAG)5 58 66.67
Z-10 F: TGCTGCTCCCTATTCTAT
R: AAATGACTGCCAATCTGA
(CTG)7 48 85.71
Z-11 F: TCGTGGAGAAGAATGAGA
R: TGACCAGGGTAAATGACTA
(ATT)5 48 66.67
引物名称
Primer name
序列
Primer sequence (5'-3')
重复基元
Repeat motif
退火温度
Tm (℃)
多态性比率
Percentage of polymorphic loci (%)
Z-12 F: AAGAGTTGGAAGAGCGTGAG
R: GGTAGGGTAAGGTCTATGTGC
(ACA)5 54 83.33
Z-13 F: TCAATGGAGACGACGACT
R: AGAGGATGGATTCCGATG
(CTC)5 52 71.43
Z-14 F: ACGCATCGCCTAAATCACTG
R: TCATTCGCATTCCCAAACTC
(GGC)5 54 71.43
Z-15 F: TATGTGGCGAAGTGAGTG
R: AAATGACGGGAGAAGGAC
(TA)9 51 77.78
Z-16 F: ATGATTCCGTTGCTGTCT
R: ATTGCTGATTCCTGTTCC
(TC)15 50 66.67
Z-17 F: ACATTTTGGTTGTGACTTGG
R: ATGGGTTTTGAGATTTGAGG
(CTT)6 54 81.82
Z-18 F: CCGTGGCTCTGAGATTTA
R: CGTGGGACTACACTGGATA
(AGT)5 51 93.33
Z-19 F: TCCAGCACTTAGACCAACC
R: CTCCGCATCTCGTCATAC
(ATG)6 52 57.14
Z-20 F: GGGTCTTCCCGAACAAAC
R: TACTTCCAAAACCGCCTC
(TGT)6 54 100.00
Z-21 F: TTCTAACTCCGCCCCTAC
R: CAAGACTTTTCCACCACC
(TC)16 52 64.29
Z-22 F: CGAAGAGGTAGTGATAAGGC
R: GTCAGCAAGGTTCAGGGA
(TTG)5 53 50.00
Z-23 F: CTTAGTGCTGGCGATGAT
R: TGGGCTTGCTCTTTGTCT
(AGA)6 53 57.14
Z-24 F: TTGTGGGATTTCACTGGG
R: TGGAAGACGGGAATGGTA
(TGT)5 54 77.78
Z-25 F: TGGGAAGAAACGAAGAAACA
R: GTTACATGAGTCAGGCTAGG
(CTC)5 55 70.00
Z-26 F: TAATTGTGACTCCTCCTCCT
R: CAGGCTAGGTCGTTTTGATA
(TA)9 54 50.00

图3

部分多态性SSR引物在亲本及6个F2代单株中的扩增情况 M: 100 bp DNA marker; P1: 父本黑美人; P2: 母本Red-P1; 1~6: 6个F2代单株。红色箭头是对部分多态性条带的标识。"

[1] Zhang H, Xu F, Wu Y, Hu H H, Dai X F. Progress of potato staple food research and industry development in China. J Integr Agric, 2017, 16:2924-2932.
doi: 10.1016/S2095-3119(17)61736-2
[2] 吴承金, 殷红清, 李大春, 程群. 发展马铃薯产业的优势浅析. 现代农业科学, 2009, 16:282-283.
Wu C J, Yin H Q, Li D C, Cheng Q. Advantage of the development of potato industry. Modern Agric Sci, 2009, 16:282-283 (in Chinese with English abstract).
[3] Reddivari L, Vanamala J, Chintharlapalli S, Safe S H, Miller J C. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis, 2007, 28, 2227-2235.
pmid: 17522067
[4] Han K H, Shimada K I, Sekikawa M, Fukushima M. Anthocyanin-rich red potato flakes affect serum lipid peroxidation and hepatic SOD mRNA level in rats. Biosci Biotechnol Biochem, 2007, 71:1356-1359.
doi: 10.1271/bbb.70060
[5] Wang Y J, Zheng Y L, Lu J, Chen G Q, Wang X H, Feng J, Ruan J, Sun X, Li C X, Sun Q J. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain. Neurochem Int, 2010, 56:424-430.
doi: 10.1016/j.neuint.2009.11.016
[6] Staub J, Serquen F, Gupta M. Genetic markers, map construction, and their application in plant breeding. Hortscience, 1996, 31:729-741.
doi: 10.21273/HORTSCI.31.5.729
[7] Sharma V, Nandineni M R. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems. Mol Phylog Evol, 2014, 73:10-17.
doi: 10.1016/j.ympev.2014.01.003
[8] Ismail N A, Rafii M Y, Mahmud T M M, Hanafi M M, Miah G. Molecular markers: a potential resource for ginger genetic diversity studies. Mol Biol Rep, 2016, 43:1347-1358.
pmid: 27585572
[9] Sıdıka Z, Salih K, Yıldız D, Murat G. Development and characterization of SSR markers from pistachio (Pistacia vera L.) and their transferability to eight Pistacia species. Sci Hortic, 2015, 189:94-103.
doi: 10.1016/j.scienta.2015.04.006
[10] Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: features and applications. Trends Biotechnol, 2005, 23:48-55.
pmid: 15629858
[11] 石景. 基于SSR标记的彩色马铃薯亲缘关系分析及指纹图谱构建. 华中农业大学硕士学位论文,湖北武汉, 2011.
Shi J. Phylogenetic Relationship Analysis and Fingerprinting of Pigmented Potato with SSR Markers. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei,China, 2011 (in Chinese with English abstract).
[12] 李先平, 王冬冬, 陈秀华, 朱延明, 陈勤. SSR分子标记分析彩色马铃薯品种间的遗传关系. 东北农业大学学报, 2012, 43(7):61-69.
Li X P, Wang D D, Chen X H, Zhu Y M, Chen Q. Genetic diversity research of color potato cultivars by SSR molecular markers. J Northeast Agric Univ, 2012, 43(7):61-69 (in Chinese with English abstract).
[13] 崔阔澍, 陈龙, 于肖夏, 鞠天华, 于卓, 肖特, 聂利珍, 姜超. 四倍体彩色马铃薯分子遗传连锁图谱构建研究. 东北师大学报(自然科学版), 2015, 47(4):116-122.
Cui K S, Chen L, Yu X X, Ju T H, Yu Z, Xiao T, Nie L Z, Jiang C. Construction of SSR genetic linkage map for tetraploid colored potato. J Northeast Nor Univ (Nat Sci Edn), 2015, 47(4):116-122 (in Chinese with English abstract).
[14] Milbourne D, Meyer R C, Collins A J, Ramsay L D, Gebhardt C, Waugh R. Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol Gene Genet, 1998, 259:233-245.
[15] Ashkenazi V, Chani E, Lavi U, Levy D, Hille J, Veilleux R E. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome, 2001, 44:50-62.
pmid: 11269356
[16] Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theor Appl Genet, 2005, 111:456-466.
pmid: 15942755
[17] 袁娟. 基于马铃薯全基因组序列SSR标记的开发及验证. 四川农业大学硕士学位论文,四川成都, 2013.
Yuan J. Genme-wide Development and Identification of SSRs in Potato. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan,China, 2013 (in Chinese with English abstract).
[18] 肖桂林, 徐竹清, 曹红菊, 李竟才, 夏军辉, 宋波涛. 基于全基因组序列的马铃薯SSR标记开发与连锁图谱加密. 园艺学报, 2018, 45:1551-1562.
Xiao G L, Xu Z Q, Cao H J, Li J C, Xia J H, Song B T. Development of SSR markers based on potato genome sequence and construction of a higher-density linkage map. Hortic Plant J, 2018, 45:1551-1562 (in Chinese with English abstract).
[19] Lee J, Durst R W, Wrolstad R E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int, 2005, 88:1269-1278.
doi: 10.1093/jaoac/88.5.1269
[20] Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet, 2002, 30:194-200.
pmid: 11799393
[21] 姚嘉瑜, 张立武, 赵捷, 徐益, 祁建民, 张列梅. 黄麻全基因组SSR鉴定与特征分析. 作物学报, 2019, 45:10-17.
Yao J Y, Zhang L W, Zhao J, Xu Y, Qi J M, Zhang L M. Evaluation and characteristic analysis of SSRs from the whole genome of jute (Corchorus capsularis). Acta Agron Sin, 2019, 45:10-17 (in Chinese with English abstract).
[22] 原志敏. 玉米全基因组SSRs分子标记开发与特征分析. 四川农业大学硕士学位论文,四川成都, 2013.
Yuan Z M. Development and Characterization of SSR Markers Providing Genome-wide Coverage and High Resolution in Maize. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan,China, 2013 (in Chinese with English abstract).
[23] Huo N, Lazo G, Vogel J, You F M, Ma Y, Hayden D M, Coleman-Derr D, Hill A, Dvorak J, Anderson O D, Luo M C, Gu Y Q. The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genom, 2008, 8:135-147.
doi: 10.1007/s10142-007-0062-7
[24] Bai T D, Xu L A, Xu M, Wang Z R. Characterization of masson pine (Pinus massoniana Lamb.) microsatellite DNA by 454 genome shotgun sequencing. Tree Genet Genom, 2014, 10:429-437.
doi: 10.1007/s11295-013-0684-y
[25] 詹海仙, 王颖莉, 杜晨晖, 张丹, 李睿, 杨梦茹, 张朔生. 基于甘草全基因组序列的SSR分子标记开发. 分子植物育种, 2020, 18:6093-6100.
Zhan H X, Wang Y L, Du C H, Zhang D, Li R, Yang M R, Zhang S S. SSR molecular markers development based on whole genome sequences in Glycyrrhiza uralensis Fisch. Mol Plant Breed, 2020, 18:6093-6100 (in Chinese with English abstract).
[26] 王玉龙, 黄冰艳, 王思雨, 杜培, 齐飞艳, 房元瑾, 孙子淇, 郑峥, 董文召, 张新友. 四倍体野生种花生A. monticola全基因组SSR的开发与特征分析. 中国农业科学, 2019, 52:2567-2585.
Wang Y L, Huang B Y, Wang S Y, Du P, Qi F Y, Fang Y J, Sun Z Q, Zheng Z, Dong W Z, Zhang X Y. Development and characterization of whole genome SSR in tetraploid wild peanut (Arachis monticola). Sci Agric Sin, 2019, 52:2567-2585 (in Chinese with English abstract).
[27] 马名川, 刘龙龙, 刘璋, 周建萍, 南成虎, 张丽君. 苦荞全基因组SSR位点特征分析与分子标记开发. 作物杂志, 2021, (1):38-46.
Ma M C, Liu L L, Liu Z, Zhou J P, Nan C H, Zhang L J. Analysis of SSR loci in whole genome and development of molecular markers in tartary buckwheat. Crops, 2021, (1):38-46 (in Chinese with English abstract).
[28] 童治军, 肖炳光. 3种烟草基因组SSR位点信息分析和标记开发. 西北植物学报, 2014, 34:1549-1558.
Tong Z J, Xiao B G. Survey of SSR loci information in three tobacco genomes and development of SSR markers. Acta Bot Boreali-Occident Sin, 2014, 34:1549-1558 (in Chinese with English abstract).
[29] Meiyalaghan S, Thomson S, Kenel F, Monaghan K, Baldwin S. Development and application of high-resolution melting DNA markers for the polygenic control of tuber skin colour in autotetraploid potato. Mol Breed, 2019, 39:1-17.
doi: 10.1007/s11032-018-0907-x
[30] 许芸梅, 李玉梅, 贾玉鑫, 张春芝, 李灿辉, 黄三文, 祝光涛. 马铃薯红色薯肉调控基因的精细定位与候选基因分析. 中国农业科学, 2019, 52:2678-2685.
Xu Y M, Li Y M, Jia Y X, Zhang C Z, Li C H, Huang S W, Zhu G T. Fine mapping and candidate genes analysis for regulatory gene of anthocyanin synthesis in red-colored tuber flesh. Sci Agric Sin, 2019, 52:2678-2685 (in Chinese with English abstract).
[31] Gong Y M, Xu S C, Mao W H, Hu Q Z, Zhang G W, Ding J, Li Y D. Developing new SSR markers from ESTs of pea (Pisum sativum L.). J Zhejiang Univ Sci, 2010, 11:702-707.
[32] Ellis J R, Burke J M. EST-SSRs as a resource for population genetic analyses. Heredity, 2007, 99:125-132.
pmid: 17519965
[1] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[4] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[5] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[6] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[7] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[8] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[9] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[10] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[11] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[12] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[13] 姚嘉瑜,张立武,赵捷,徐益,祁建民,张列梅. 黄麻全基因组SSR鉴定与特征分析[J]. 作物学报, 2019, 45(1): 10-17.
[14] 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36.
[15] 王恒波,肖乃衍,朱专为,刘翠翠,IntikhabALAM,陈平华,卢运海. 基于甘蔗热带种(LA-purple)全基因组序列的SSR开发及特征分析[J]. 作物学报, 2018, 44(9): 1400-1410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!