作物学报 ›› 2021, Vol. 47 ›› Issue (3): 438-450.doi: 10.3724/SP.J.1006.2021.04063
韩贝1(), 王旭文2(), 李保奇1, 余渝2, 田琴2,*(), 杨细燕1,*()
HAN Bei1(), WANG Xu-Wen2(), LI Bao-Qi1, YU Yu2, TIAN Qin2,*(), YANG Xi-Yan1,*()
摘要:
干旱是导致全世界棉花严重减产、纤维品质下降的重要因素, 因此获得高产、优质、耐旱的棉花新品种一直是棉花的育种目标。本研究选取217份陆地棉栽培种组成的自然群体为研究对象, 采用全生育期处理组灌水量为对照组50%的干旱胁迫处理, 并在处理后期对217份材料的株高、衣分、单铃重等18个性状进行2年2点的表型鉴定, 干旱胁迫后, 群体间响应差异明显, 多个表型性状在对照和处理间表现显著差异。通过BLUP分析表型数据并计算各性状的抗旱系数; 全基因组范围选取的214对多态性SSR分子标记扫描群体, 共检测到393个多态性位点, 基因多样性系数平均值为0.402, 范围为0.072~0.631, PIC值平均为0.329, 范围为0.070~0.560; 群体结构分析表明, 该群体可分为2个亚群。用上述SSR标记分别对18个性状的抗旱系数进行关联分析, 共关联到76个极显著位点(P<0.01), 表型变异解释率为2.930%~7.218%, 其中共有14个标记位点能同时被2种或以上性状检测到。研究结果可为后期棉花杂交育种亲本选择及抗旱分子标记辅助育种提供理论基础及参考依据。
[1] | Passioura J B. Drought and drought tolerance. Plant Growth Regul, 1996,20:79-83. |
[2] |
Passioura J. The drought environment: physical, biological and agricultural perspectives. J Exp Bot, 2007,58:113-117.
doi: 10.1093/jxb/erl212 pmid: 17122406 |
[3] | Levi A, Paterson A H, Barak V, Yakir D, Wang B H, Chee P W, Saranga Y. Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Mol Breed, 2008,23:179-195. |
[4] | Xiao Y L, Yu C Y, Lei J G, Cruz Q D D, Yabes J M, Tabanao D A. Association mapping for drought tolerance of rice (Oryza sativa L.) at vegetative stage. Agric Sci Technol, 2012,13:1385-1394. |
[5] | Savage M J, Ritchie J T, Bland W L, Dugas W A. Lower limit of soil water availability. Agron J, 1996,88:644-651. |
[6] | Cook C G, Elzik K M. Fruiting and lint yield of cotton cultivars under irrigated and nonirrigated conditions. Field Crops Res, 1993,33:411-421. |
[7] |
Tuberosa R. Phenotyping for drought tolerance of crops in the genomics era. Front Physiol, 2012,3:347.
doi: 10.3389/fphys.2012.00347 pmid: 23049510 |
[8] | 桑晓慧, 赵云雷, 王红梅, 陈伟, 龚海燕, 赵佩, 崔艳利. 陆地棉抗旱性与SSR分子标记的关联分析. 棉花学报, 2017,29:241-252. |
Sang X H, Zhao Y L, Wang H M, Chen W, Gong H Y, Zhao P, Cui Y L. Association analysis of drought tolerance and SSR markers in upland cotton. Cotton Sci, 2017,29:241-252 (in Chinese with English abstract). | |
[9] | Baytar A A, Peynircioğlu C, Sezener V, Basal H, Frary A, Doğanlar S. Genome-wide association mapping of yield components and drought tolerance-related traits in cotton. Mol Breed, 2018,38:74. |
[10] |
Hou S, Zhu G Z, Li Y, Li W X, Fu J, Niu E, Li L C, Zhang D Y, Guo W Z. Genome-wide association studies reveal genetic variation and candidate genes of drought stress related traits in cotton (Gossypium hirsutum L.). Front Plant Sci, 2018,9:1276.
doi: 10.3389/fpls.2018.01276 pmid: 30233620 |
[11] | Ulloa M, Santiago L M D, Hulse-Kemp A M, Stelly D M, Burke J J. Enhancing upland cotton for drought resilience, productivity, and fiber quality: comparative evaluation and genetic dissection. Mol Genet Genomics, 2020,295:155-176. |
[12] | 杜雄明, 周忠丽. 棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005. pp 8-32. |
Du X M, Zhou Z L. Descriptors and Data Standard for Cotton (Gossypium spp.). Beijing: China Agriculture Press, 2005. pp 8-32(in Chinese). | |
[13] | Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993,11:122-127. |
[14] | 张军, 武耀廷, 郭旺珍, 张天真. 棉花微卫星标记的PAGE/银染快速检测. 棉花学报, 2000,12:267-269. |
Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci, 2000,12:267-269 (in Chinese with English abstract). | |
[15] | Zhao L, Lyu Y, Cai C P, Tong X C, Chen X D, Zhang W, Du H, Guo X H, Guo W Z. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics, 2012,13:539. |
[16] | 钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析. 南京农业大学博士学位论文, 江苏南京, 2009. |
Qian N. Genetic Diversity and Association of Gene (QTL) of Breeding Target Traits of Upland Cotton. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2009 (in Chinese with English abstract). | |
[17] | Song X L, Zhang T Z. Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci, 2009,177:317-323. |
[18] | 薛艳, 张新宇, 沙红, 李雪源, 孙杰, 李保成. 新疆早熟棉品种SSR指纹图谱构建与品种鉴别. 棉花学报, 2010,22:360-366. |
Xue Y, Zhang X Y, Sha H, Li X Y, Sun J, Li B C. Construction of fingerprinting map based on SSR and identification of cultivars for earliness cultivars in upland cotton in Xinjiang. Cotton Sci, 2010,22:360-366 (in Chinese with English abstract). | |
[19] | Sun F D, Zhang J H, Wang S F, Gong W K, Shi Y Z, Liu A Y, Li J W, Gong J W, Shang H H, Yuan Y L. QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed, 2012,30:569-582. |
[20] | 艾先涛, 梁亚军, 沙红, 王俊铎, 郑巨云, 吐尔逊江, 多力坤, 李雪源, 华金平. 新疆自育陆地棉品种 SSR 遗传多样性分析. 作物学报, 2014,40:369-379. |
Ai X T, Liang Y J, Sha H, Wang J Z, Zheng J Y, Tu E X J, Duo L K, Li X Y, Hua J P. Genetic diversity analysis on local upland cotton cultivars in Xinjiang based on SSR markers. Acta Agron Sin, 2014,40:369-379 (in Chinese with English abstract). | |
[21] | Bates D, Machler M, Bolker B M, Walker S C. Fitting linear mixed-effects models using lme4. J Stat Softw, 2015,67:1-48. |
[22] | Nyquist W E, Baker R J. Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci, 1991,10:235-322. |
[23] | 兰巨生. 农作物综合抗旱性评价方法的研究. 西北农业学报, 1998,7(3):85-87. |
Lan J S. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agric Boreali-Occident Sin, 1998,7(3):85-87 (in Chinese with English abstract). | |
[24] | 冯方剑, 宋敏, 陈全家, 姚正培, 李杨阳, 刘艳, 王兴安, 曲延英. 棉花苗期抗旱相关指标的主成分分析及综合评价. 新疆农业大学学报, 2011,34:211-217. |
Feng F J, Song M, Chen Q J, Yao P Z, Li Y Y, Liu Y, Wang X A, Qu Y Y. Analysis and comprehensive evaluation on principal component of relative indices of drought resistance at the seedling stage of cotton. J Xinjiang Agric Univ, 2011,34:211-217. | |
[25] | Liu K, Muse S. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21:2128-2129. |
[26] |
Hubisz M J, Daniel F, Matthew S, Pritchard J. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour, 2010,9:1322-1332.
doi: 10.1111/j.1755-0998.2009.02591.x pmid: 21564903 |
[27] | Earl D A, Vonholdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012,4:359-361. |
[28] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2010,14:2611-2620.
pmid: 15969739 |
[29] | Hardy O J, Vekemans X. SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Resour, 2010,2:618-620. |
[30] | Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635. |
[31] |
Abdurakhmonov I Y, Saha S, Jenkins J N, Buriev Z T, Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, Kohel R J, Abdukarimov A. Linkage disequilibrium based association mapping of fiber quality traits inG. hirsutum L. variety germplasm. Genetica, 2009,136:401-417.
pmid: 19067183 |
[32] |
Schuler G D. Sequence mapping by electronic PCR. Genome Res, 1997,7:541-550.
doi: 10.1101/gr.7.5.541 pmid: 9149949 |
[33] |
Wang M J, Tu L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L Y, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y C, Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z H, Udall J A, Zhang X L. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019,51:224-229.
doi: 10.1038/s41588-018-0282-x pmid: 30510239 |
[34] |
Said J I, Knapka J A, Song M Z, Zhang J F. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison betweenGossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genomics, 2015,290:1615-1625.
doi: 10.1007/s00438-015-1021-y pmid: 25758743 |
[35] |
Said J I, Lin Z X, Zhang X L, Song M Z, Zhang J F. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics, 2013,14:776.
doi: 10.1186/1471-2164-14-776 pmid: 24215677 |
[36] |
Said J I, Song M Z, Wang H T, Lin Z H, Zhang X L, Fang D D, Zhang J F. A comparative meta-analysis of QTL between intraspecificGossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics, 2015,290:1003-1025.
doi: 10.1007/s00438-014-0963-9 pmid: 25501533 |
[37] | 唐凯, 王柏林, 姜海波, 何新林. 新疆石河子市近51年蒸发量变化特征分析. 水电能源科学, 2016,34(11):17-21. |
Tang K, Wang B L, Jiang H B, He X L. Variation characteristics of evaporation in Shihezi of Xinjiang in recent 51 years. Water Resour Power, 2016,34(11):17-21 (in Chinese with English abstract). | |
[38] | 文强, 韩炜. 天山南北坡近46年蒸发量变化及相关因素对比分析——以呼图壁和库尔勒为例. 伊犁师范学院学报: 自然科学版, 2019,13(4):43-50. |
Wen Q, Han W. Changes in evaporation over the last 46 years of the Tianshan Mountains and comparative analysis of related Factors—Take Hutubi and Korla for example. J Yili Normal Univ (Nat Sci Edn) 2019,13(4):43-50 (in Chinese with English abstract). | |
[39] |
Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet, 2003,106:384-396.
doi: 10.1007/s00122-002-1025-y pmid: 12589538 |
[40] | Campbell B T, Jones M A. Assessment of genotype × environment interactions for yield and fiber quality in cotton performance trials. Euphytica, 2005,144:69-78. |
[41] | Farias F J C, Carvalho L P, Silva Filho J L, Teodoro P E. Biplot analysis of phenotypic stability in upland cotton genotypes in Mato Grosso. Genet Mol Res, 2016,15:1-8. |
[42] | Li B Q, Tian Q, Wang X W, Han B, Liu L, Kong X H, Si A J, Wang J, Lin Z X, Zhang X L, Yu Y, Yang X Y. Phenotypic plasticity and genetic variation of cotton yield and its related traits under water-limited conditions. Crop J, 2020,8:966-976. |
[43] | Zheng J Y, Oluoch G, Riaz Khan M K, Wang X X, Cai X Y, Zhou Z L, Wang C Y, Wang Y H, Li X Y, Liu X Y, Wang K B. Mapping QTLs for drought tolerance in an F2:3 population from an inter-specific cross betweenGossypium tomentosum and Gossypium hirsutum. Genet Mol Res, 2016. doi: 10.4238/gmr.15038477. |
[44] | Frova C, Krajewski P, Fonzo N D, Villa M, Sari-Gorla M. Genetic analysis of drought tolerance in maize by molecular markers: I. Yield components. Theor Appl Genet, 1999,99:280-288. |
[45] | 吴迷, 汪念, 沈超, 黄聪, 温天旺, 林忠旭. 基于重测序的陆地棉InDel标记开发与评价. 作物学报, 2019,45:196-203. |
Wu M, Wang N, Shen C, Huang C, Wen T W, Lin Z X. Deve lopment and evaluation of InDel markers in cotton based on whole-genome re-sequencing data. Acta Agron Sin, 2019,45:196-203 (in Chinese with English abstract). |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[3] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[4] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[5] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[6] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
[7] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[8] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[9] | 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150. |
[10] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[11] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
[12] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[13] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[14] | 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202. |
[15] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
|