欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (1): 76-85.doi: 10.3724/SP.J.1006.2022.04241

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析

许德蓉1,2(), 孙超1,2(), 毕真真1,2, 秦天元1,2, 王一好1,2, 李成举1,2, 范又方1,2, 刘寅笃1,2, 张俊莲1, 白江平1,2,*()   

  1. 1甘肃省干旱生境作物学重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室, 甘肃兰州 730070
    2甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2020-11-08 接受日期:2021-04-14 出版日期:2022-01-12 网络出版日期:2021-06-16
  • 通讯作者: 白江平
  • 作者简介:许德蓉, E-mail: 1830204585@qq.com
    孙超, E-mail: sunc@gsau.edu.cn第一联系人:**同等贡献
  • 基金资助:
    国家自然科学基金项目(32060502);国家自然科学基金项目(31660432);甘肃省创新能力提升项目(2019B-073);国家现代农业产业技术体系建设专项(马铃薯)(CARS-09-P14);甘肃省马铃薯产业体系建设专项(GARS-03-P1);甘肃省科技计划项目(19ZD2WA002-02);甘肃省科技计划项目(18JR3RA174);甘肃农业大学人才专项资助(2017RCZX-44)

Identification of StDRO1 gene polymorphism and association analysis with root traits in potato

XU De-Rong1,2(), SUN Chao1,2(), BI Zhen-Zhen1,2, QIN Tian-Yuan1,2, WANG Yi-Hao1,2, LI Cheng-Ju1,2, FAN You-Fang1,2, LIU Yin-Du1,2, ZHANG Jun-Lian1, BAI Jiang-Ping1,2,*()   

  1. 1Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2020-11-08 Accepted:2021-04-14 Published:2022-01-12 Published online:2021-06-16
  • Contact: BAI Jiang-Ping
  • About author:First author contact:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32060502);National Natural Science Foundation of China(31660432);Gansu Provincial Education Department(2019B-073);China Agriculture Research System (Potato)(CARS-09-P14);Agriculture Research System of Gansu Province (Potato)(GARS-03-P1);Gansu Provincial Science and Technology Department Program(19ZD2WA002-02);Gansu Provincial Science and Technology Department Program(18JR3RA174);Fund of Gansu Agricultural University(2017RCZX-44)

摘要:

为鉴定与马铃薯根系性状相关联的StDRO1基因单核苷酸多态性(single nucleotide polymorphism, SNP)位点, 本研究对110份同源四倍体马铃薯材料StDRO1基因的编码区进行了克隆和测序, 筛选其SNP, 并对StDRO1的SNP位点与马铃薯总根表面积、总根体积和平均根系直径等主要根系性状参数进行了关联分析。结果显示, StDRO1第2外显子上检测到1个SNP位点, 命名为G64C; 第3外显子上检测到10个SNP位点, 分别命名为G152A、A214G、A297G、C314T、A337T、T353C、T560A、C577A、C620A和C625A; 在第4外显子上检测到1个SNP位点, 命名为T793A。关联分析结果表明, StDRO1基因G152A位点在总根体积表现为GA类基因型>GG类基因型(P<0.05); C314T位点在平均根系直径表现为CC类基因型>CT类基因型(P<0.05); A337T位点在总根表面积、鲜重和干重均表现为AT类基因型>AA类基因型(P<0.05), 而在平均根系直径则表现为AA类基因型>AT类基因型(P<0.05); T353C位点在总根表面积、总根体积和鲜重均表现为TC类基因型>TT类基因型(P<0.05); C620A位点在总根体积表现为CA类基因型>CC类基因型(P<0.05); T793A位点在总根表面积、总根体积和鲜重均表现为AT类基因型>TT类基因型(P<0.05)。综上, StDRO1基因的上述6个SNP对马铃薯根系性状有显著影响, 其中A337T、T353C和T793A位点尤为重要。研究结果为后续马铃薯根系构型研究和遗传改良提供了理论参考, 但能否作为马铃薯根系性状遗传标记还需扩大群体样本进一步验证。

关键词: 马铃薯, StDRO1基因, 根系性状, 关联分析, SNP

Abstract:

In order to identify the single nucleotide polymorphism (SNP) of StDRO1 gene associated with potato root traits, StDRO1 gene coding region of the 110 tetraploid potato genotypes was cloned and sequenced. The association analysis between the StDRO1 SNPs and the major root traits of potato such as surface area, volume, and average diameter were carried out. The results showed that a SNP (G64C) was detected in the second exon of the StDRO1, 10 SNPs (G152A, A214G, A297G, C314T, A337T, T353C, T560A, C577A, C620A, and C625A) were identified in the third exon, and a SNP (T793A) was detected in the fourth exon. The association analysis indicated that in the total root volume, G152A locus of StDRO1 gene showed that GA genotype was superior to GG genotype (P < 0.05). In the average root diameter, C314 locus showed that CC genotype were superior to CT genotype (P < 0.05). In the root surface area, fresh weight, and dry weight, A337T locus showed that AT genotype were better than AA genotype (P < 0.05), while the locus in the average root diameter showed that AT genotype was significantly lower than AA genotype (P < 0.05). The root surface area, root volume, and fresh weight were showed as TC genotype > TT genotype (P < 0.05) in T353C site; the root volume was showed as CA genotype > CC genotype (P < 0.05) in C620A site; the root surface area, root volume, and fresh weight were showed as AT genotype > TT genotype (P < 0.05) in T793A site. In summary, the above six SNPs of StDRO1 genes had a significant impact on potato root traits, and the A337T, T353C, and T793A sites were particularly important. These results provide a basic theoretical reference for subsequent potato root architecture research and genetic improvement, but whether it could be used as a genetic marker for potato root traits need to be further verified by expanding the population sample.

Key words: potato, StDRO1 gene, root traits, association analysis, SNP

表1

110份马铃薯材料信息表"

材料编号
Material code
CIP号
CIP code
材料编号
Material code
CIP号
CIP code
材料编号
Material code
CIP号
CIP code
C2 CIP391065.69 C56 CIP394034.65 C99 CIP388615.22
C4 CIP392617.54 C57 CIP394034.7 C100 CIP389468.3
C5 CIP392634.52 C58 CIP394579.36 C101 CIP390637.1
C8 CIP393227.66 C59 CIP394600.52 C102 CIP391180.6
C9 CIP393228.67 C60 CIP394611.112 C103 CIP391533.1
C10 CIP393371.164 C61 CIP394613.139 C104 CIP391724.1
C11 CIP391004.18 C62 CIP394613.32 C105 CIP392032.2
C13 CIP393280.64 C63 CIP394614.117 C106 CIP392740.4
C14 CIP391047.34 C64 CIP394881.8 C107 CIP392745.7
C15 CIP391058.175 C65 CIP395186.6 C108 CIP392759.1
C16 CIP393085.5 C66 CIP395193.6 C109 CIP393613.2
C17 CIP398192.213 C67 CIP395195.7 C110 CIP393615.6
C18 CIP398098.119 C68 CIP395196.4 C112 CIP397030.31
C19 CIP398098.203 C70 CIP395432.51 C113 CIP397035.26
C20 CIP398180.253 C71 CIP395434.1 C114 CIP302428.20
C21 CIP398180.289 C72 CIP395436.8 C115 CIP302476.108
C23 CIP398180.612 C74 CIP396311.1 C116 CIP302499.30
C27 CIP398208.33 C79 CIP397029.21 C117 CIP304345.102
C28 CIP398208.58 C80 CIP397036.7 C119 CIP304350.118
C29 CIP398208.704 C81 CIP397039.51 C120 CIP304350.95
C30 CIP301024.14 C82 CIP397044.25 C121 CIP304371.67
C32 CIP301040.63 C83 CIP397055.2 C122 CIP304383.41
C33 CIP300046.22 C84 CIP397065.2 C123 CIP304383.80
C34 CIP300048.12 C85 CIP397067.2 C124 CIP304387.39
C35 CIP300054.29 C86 CIP397069.5 C127 CIP397077.16
C39 CIP300072.1 C87 CIP397073.15 C128 CIP391919.3
C41 CIP300099.22 C88 CIP397078.12 C130 CIP391931.1
C43 CIP379706.27 C89 CIP397079.26 C131 CIP394906.6
C44 CIP385499.11 C90 CIP397079.6 C132 CIP395438.1
C46 CIP388676.1 C91 CIP397098.12 C133 CIP394904.20
C48 CIP390478.9 C92 CIP397099.6 Atl 大西洋Atlantic
C49 CIP391207.2 C93 CIP397100.9 QS9 青薯9号Qingshu 9
C50 CIP391382.18 C94 CIP397196.3 GN2 甘农薯2号Gannongshu 2
C51 CIP392781.1 C95 CIP397196.8 LS3 陇薯3号Longshu 3
C52 CIP392797.22 C96 CIP397197.9 LS6 陇薯6号Longshu 6
C53 CIP392822.3 C97 CIP398014.2 Fa 费乌瑞它Favorita
C54 CIP392973.48 C98 CIP388611.22

表2

PCR引物序列"

引物
Primer
引物序列
Primer sequences (5′-3′)
退火温度
Annealing temperature (℃)
产物片段长度
Product fragment length (bp)
DRO1-F CCATTCAAACATCATCACAAGA 55 1670
DRO1-R GAAATGGAACAACTAGCAGAGA

图1

StDRO1基因PCR产物电泳检测结果 M为DNA 2000分子标记; 1、2、3、4和5分别表示材料C2、C4、C5、C8和C9的StDRO1扩增片段。"

图1

StDRO1基因PCR产物电泳检测结果 M为DNA 2000分子标记; 1、2、3、4和5分别表示材料C2、C4、C5、C8和C9的StDRO1扩增片段。"

图2

马铃薯StDRO1基因序列比对结果"

图2

马铃薯StDRO1基因序列比对结果"

表3

不同马铃薯材料StDRO1基因编码区的单核苷酸变异"

碱基类型
Base type
碱基位置Base site (bp)
64 152 214 297 314 337 353 560 577 620 625 793
参考基因组碱基类型
Base type of reference genome
G G A A C A T T C C C T
变异碱基类型
Variant base type
C A G G T T C A A A A A

表3

不同马铃薯材料StDRO1基因编码区的单核苷酸变异"

碱基类型
Base type
碱基位置Base site (bp)
64 152 214 297 314 337 353 560 577 620 625 793
参考基因组碱基类型
Base type of reference genome
G G A A C A T T C C C T
变异碱基类型
Variant base type
C A G G T T C A A A A A

表4

马铃薯StDRO1的基因型频率和基因频率"

单核苷酸多态性位点
SNP
样本数
Sample number
基因型频率
Genotype frequency
基因频率
Gene frequency
卡平方
χ2
G64C 110 GG
0.2818 (31)
GC
0.7182 (79)
G
0.6409
C
0.3591
34.5310
G152A 110 GG
0.8364 (92)
GA
0.1636 (18)
G
0.9182
A
0.0818
0.8734
A214G 110 AA
0.3909 (43)
AG
0.6091 (67)
A
0.6955
G
0.3045
21.0940
A297G 110 AA
0.2545 (28)
AG
0.7455 (82)
A
0.6273
G
0.3727
38.8385
C314T 110 CC
0.6818 (75)
CT
0.3182 (35)
C
0.8409
T
0.1591
3.9372
单核苷酸多态性位点
SNP
样本数
Sample number
基因型频率
Genotype frequency
基因频率
Gene frequency
卡平方
χ2
A337T 110 AA
0.6818 (75)
AT
0.3182 (35)
A
0.8409
T
0.1591
3.9372
T353C 110 TT
0.8182 (90)
TC
0.1818 (20)
T
0.9091
C
0.0909
1.1000
T560A 110 AA
0.6182 (68)
AT
0.3818 (42)
A
0.8091
T
0.1909
6.1242
C577A 110 CC
0.2818 (31)
CA
0.7182 (79)
C
0.6409
A
0.3591
34.5310
C620A 110 CC
0.3545 (39)
CA
0.6455 (71)
C
0.6773
A
0.3227
24.9768
C625A 110 CC
0.6545 (72)
CA
0.3455 (38)
C
0.8273
A
0.1727
4.7953
T793A 110 AT
0.7909 (87)
TT
0.2091 (23)
A
0.3955
T
0.6045
47.0682

表4

马铃薯StDRO1的基因型频率和基因频率"

单核苷酸多态性位点
SNP
样本数
Sample number
基因型频率
Genotype frequency
基因频率
Gene frequency
卡平方
χ2
G64C 110 GG
0.2818 (31)
GC
0.7182 (79)
G
0.6409
C
0.3591
34.5310
G152A 110 GG
0.8364 (92)
GA
0.1636 (18)
G
0.9182
A
0.0818
0.8734
A214G 110 AA
0.3909 (43)
AG
0.6091 (67)
A
0.6955
G
0.3045
21.0940
A297G 110 AA
0.2545 (28)
AG
0.7455 (82)
A
0.6273
G
0.3727
38.8385
C314T 110 CC
0.6818 (75)
CT
0.3182 (35)
C
0.8409
T
0.1591
3.9372
单核苷酸多态性位点
SNP
样本数
Sample number
基因型频率
Genotype frequency
基因频率
Gene frequency
卡平方
χ2
A337T 110 AA
0.6818 (75)
AT
0.3182 (35)
A
0.8409
T
0.1591
3.9372
T353C 110 TT
0.8182 (90)
TC
0.1818 (20)
T
0.9091
C
0.0909
1.1000
T560A 110 AA
0.6182 (68)
AT
0.3818 (42)
A
0.8091
T
0.1909
6.1242
C577A 110 CC
0.2818 (31)
CA
0.7182 (79)
C
0.6409
A
0.3591
34.5310
C620A 110 CC
0.3545 (39)
CA
0.6455 (71)
C
0.6773
A
0.3227
24.9768
C625A 110 CC
0.6545 (72)
CA
0.3455 (38)
C
0.8273
A
0.1727
4.7953
T793A 110 AT
0.7909 (87)
TT
0.2091 (23)
A
0.3955
T
0.6045
47.0682

表5

马铃薯StDRO1基因群体遗传特异性"

单核苷酸多态性位点SNP 纯合度
Homozygosity
杂合度Heterozygosity 有效等位基因数
Effective number of alleles
多态信息含量
Polymorphism information content (PIC)
G64C 0.5397 0.4603 1.8528 0.3544
G152A 0.8498 0.1502 1.1768 0.1390
A214G 0.5764 0.4236 1.7349 0.3339
A297G 0.5324 0.4676 1.8783 0.3583
C314T 0.7324 0.2676 1.3653 0.2318
A337T 0.7324 0.2676 1.3653 0.2318
T353C 0.8347 0.1653 1.1980 0.1516
A560T 0.6911 0.3089 1.4470 0.2612
C577A 0.5397 0.4603 1.8528 0.3544
C620A 0.5629 0.4371 1.7767 0.3416
C625A 0.7142 0.2858 1.4001 0.2449
A793T 0.5219 0.4781 1.9162 0.3638

表5

马铃薯StDRO1基因群体遗传特异性"

单核苷酸多态性位点SNP 纯合度
Homozygosity
杂合度Heterozygosity 有效等位基因数
Effective number of alleles
多态信息含量
Polymorphism information content (PIC)
G64C 0.5397 0.4603 1.8528 0.3544
G152A 0.8498 0.1502 1.1768 0.1390
A214G 0.5764 0.4236 1.7349 0.3339
A297G 0.5324 0.4676 1.8783 0.3583
C314T 0.7324 0.2676 1.3653 0.2318
A337T 0.7324 0.2676 1.3653 0.2318
T353C 0.8347 0.1653 1.1980 0.1516
A560T 0.6911 0.3089 1.4470 0.2612
C577A 0.5397 0.4603 1.8528 0.3544
C620A 0.5629 0.4371 1.7767 0.3416
C625A 0.7142 0.2858 1.4001 0.2449
A793T 0.5219 0.4781 1.9162 0.3638

表6

StDRO1基因多态性与马铃薯根系性状的关联分析"

单核苷酸多态性位点SNP 基因型Genotype 总根表面积
Surface area (cm2)
平均根系直径
Average diameter (mm)
总根体积
Root volume (cm3)
鲜重
Fresh weight (g)
干重
Dry weight (g)
G64C GG 14.9413±3.1468 a 0.4150±0.0604 a 0.1412±0.0495 a 0.1393±0.0649 a 0.0107±0.0047 a
GC 14.0160±3.7477 a 0.4270±0.1101 a 0.1482±0.0577 a 0.1352±0.0568 a 0.0100±0.0053 a
G152A GG 13.9844±3.5567 a 0.4237±0.1040 a 0.1415±0.0529 b 0.1335±0.0571 a 0.0102±0.0052 a
GA 15.7710±3.5351 a 0.4233±0.0660 a 0.1702±0.0629 a 0.1514±0.0672 a 0.0102±0.0048 a
A214G AA 13.5207±3.4322 a 0.4401±0.1031 a 0.1509±0.0590 a 0.1283±0.0586 a 0.0094±0.0053 a
AG 14.7620±3.6443 a 0.4131±0.0948 a 0.1432±0.0531 a 0.1416±0.0590 a 0.0106±0.0049 a
A297G AA 14.5685±3.2391 a 0.4056±0.0572 a 0.1340±0.0462 a 0.1400±0.0635 a 0.0107±0.0051 a
AG 14.1772±3.7271 a 0.4298±0.1087 a 0.1504±0.0578 a 0.1351±0.0576 a 0.0100±0.0051 a
C314T CC 13.9384±3.4374 a 0.4378±0.1073 a 0.1475±0.0578 a 0.1302±0.0573 a 0.0096±0.0051 a
CT 15.0018±3.8743 a 0.3934±0.0683 b 0.1434±0.0503 a 0.1498±0.0609 a 0.0114±0.0050 a
A337T AA 13.7373±3.4046 b 0.4372±0.1061 a 0.1465±0.0593 a 0.1282±0.0553 b 0.0094±0.0048 b
AT 15.4327±3.7782 a 0.3946±0.0731 b 0.1455±0.0466 a 0.1541±0.0633 a 0.0118±0.0053 a
单核苷酸多态性位点SNP 基因型Genotype 总根表面积
Surface area (cm2)
平均根系直径
Average diameter (mm)
总根体积
Root volume (cm3)
鲜重
Fresh weight (g)
干重
Dry weight (g)
T353C TT 13.9052±3.5271 b 0.4238±0.1050 a 0.1407±0.0527 b 0.1312±0.0555 b 0.0100±0.0051 a
TC 15.9487±3.5253 a 0.4229±0.0639 a 0.1712±0.0613 a 0.1597±0.0691 a 0.0109±0.0052 a
T560A AA 13.7829±3.3268 a 0.4295±0.1115 a 0.1381±0.0521 a 0.1303±0.0545 a 0.0100±0.0051 a
AT 15.0764±3.9096 a 0.4142±0.0732 a 0.1593±0.0585 a 0.1462±0.0649 a 0.0104±0.0051 a
C577A CC 14.5161±3.7664 a 0.4038±0.0608 a 0.1363±0.0477 a 0.1432±0.0617 a 0.0109±0.0049 a
CA 14.1828±3.5511 a 0.4314±0.1092 a 0.1501±0.0579 a 0.1337±0.0580 a 0.0099±0.0052 a
C620A CC 14.0477±3.6818 a 0.4018±0.0589 a 0.1307±0.0449 b 0.1407±0.0627 a 0.0103±0.0050 a
CA 14.4026±3.5725 a 0.4356±0.1132 a 0.1548±0.0589 a 0.1340±0.0570 a 0.0101±0.0052 a
C625A CC 14.3825±3.5532 a 0.4159±0.0926 a 0.1450±0.0551 a 0.1334±0.0552 a 0.0099±0.0051 a
CA 14.0765±3.7234 a 0.4384±0.1087 a 0.1485±0.0565 a 0.1420±0.0658 a 0.0106±0.0052 a
T793A TT 12.4573±2.7287 b 0.4114±0.0964 a 0.1259±0.0515 b 0.1134±0.0482 b 0.0086±0.0041 a
AT 14.7578±3.6593 a 0.4269±0.0994 a 0.1516±0.0554 a 0.1425±0.0602 a 0.0106±0.0053 a

表6

StDRO1基因多态性与马铃薯根系性状的关联分析"

单核苷酸多态性位点SNP 基因型Genotype 总根表面积
Surface area (cm2)
平均根系直径
Average diameter (mm)
总根体积
Root volume (cm3)
鲜重
Fresh weight (g)
干重
Dry weight (g)
G64C GG 14.9413±3.1468 a 0.4150±0.0604 a 0.1412±0.0495 a 0.1393±0.0649 a 0.0107±0.0047 a
GC 14.0160±3.7477 a 0.4270±0.1101 a 0.1482±0.0577 a 0.1352±0.0568 a 0.0100±0.0053 a
G152A GG 13.9844±3.5567 a 0.4237±0.1040 a 0.1415±0.0529 b 0.1335±0.0571 a 0.0102±0.0052 a
GA 15.7710±3.5351 a 0.4233±0.0660 a 0.1702±0.0629 a 0.1514±0.0672 a 0.0102±0.0048 a
A214G AA 13.5207±3.4322 a 0.4401±0.1031 a 0.1509±0.0590 a 0.1283±0.0586 a 0.0094±0.0053 a
AG 14.7620±3.6443 a 0.4131±0.0948 a 0.1432±0.0531 a 0.1416±0.0590 a 0.0106±0.0049 a
A297G AA 14.5685±3.2391 a 0.4056±0.0572 a 0.1340±0.0462 a 0.1400±0.0635 a 0.0107±0.0051 a
AG 14.1772±3.7271 a 0.4298±0.1087 a 0.1504±0.0578 a 0.1351±0.0576 a 0.0100±0.0051 a
C314T CC 13.9384±3.4374 a 0.4378±0.1073 a 0.1475±0.0578 a 0.1302±0.0573 a 0.0096±0.0051 a
CT 15.0018±3.8743 a 0.3934±0.0683 b 0.1434±0.0503 a 0.1498±0.0609 a 0.0114±0.0050 a
A337T AA 13.7373±3.4046 b 0.4372±0.1061 a 0.1465±0.0593 a 0.1282±0.0553 b 0.0094±0.0048 b
AT 15.4327±3.7782 a 0.3946±0.0731 b 0.1455±0.0466 a 0.1541±0.0633 a 0.0118±0.0053 a
单核苷酸多态性位点SNP 基因型Genotype 总根表面积
Surface area (cm2)
平均根系直径
Average diameter (mm)
总根体积
Root volume (cm3)
鲜重
Fresh weight (g)
干重
Dry weight (g)
T353C TT 13.9052±3.5271 b 0.4238±0.1050 a 0.1407±0.0527 b 0.1312±0.0555 b 0.0100±0.0051 a
TC 15.9487±3.5253 a 0.4229±0.0639 a 0.1712±0.0613 a 0.1597±0.0691 a 0.0109±0.0052 a
T560A AA 13.7829±3.3268 a 0.4295±0.1115 a 0.1381±0.0521 a 0.1303±0.0545 a 0.0100±0.0051 a
AT 15.0764±3.9096 a 0.4142±0.0732 a 0.1593±0.0585 a 0.1462±0.0649 a 0.0104±0.0051 a
C577A CC 14.5161±3.7664 a 0.4038±0.0608 a 0.1363±0.0477 a 0.1432±0.0617 a 0.0109±0.0049 a
CA 14.1828±3.5511 a 0.4314±0.1092 a 0.1501±0.0579 a 0.1337±0.0580 a 0.0099±0.0052 a
C620A CC 14.0477±3.6818 a 0.4018±0.0589 a 0.1307±0.0449 b 0.1407±0.0627 a 0.0103±0.0050 a
CA 14.4026±3.5725 a 0.4356±0.1132 a 0.1548±0.0589 a 0.1340±0.0570 a 0.0101±0.0052 a
C625A CC 14.3825±3.5532 a 0.4159±0.0926 a 0.1450±0.0551 a 0.1334±0.0552 a 0.0099±0.0051 a
CA 14.0765±3.7234 a 0.4384±0.1087 a 0.1485±0.0565 a 0.1420±0.0658 a 0.0106±0.0052 a
T793A TT 12.4573±2.7287 b 0.4114±0.0964 a 0.1259±0.0515 b 0.1134±0.0482 b 0.0086±0.0041 a
AT 14.7578±3.6593 a 0.4269±0.0994 a 0.1516±0.0554 a 0.1425±0.0602 a 0.0106±0.0053 a

表7

不同SNP位点组合与马铃薯总根表面积和鲜重的关联分析"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
总根表面积
Surface area (cm2)
鲜重
Fresh weight (g)
7-1 337AA+353TT+793AT 13.7148±3.3564 ab 0.1290±0.0530 ab
7-2 337AA+353TT+793TT 12.0009±2.2114 b 0.1028±0.0364 b
7-3 337AA+353TC+793AT 16.0900±3.6150 a 0.1532±0.0674 ab
7-4 337AA+353TC+793TT 14.7243±3.3069 ab 0.1583±0.0783 ab
7-5 337AT+353TT+793AT 15.3848±3.8763 ab 0.1515±0.0621 ab
7-6 337AT+353TT+793TT 11.6084±2.0201 b 0.1250±0.0230 ab
7-7 337AT+353TC+793AT 16.7491±3.0515 a 0.1808±0.0621 a

表7

不同SNP位点组合与马铃薯总根表面积和鲜重的关联分析"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
总根表面积
Surface area (cm2)
鲜重
Fresh weight (g)
7-1 337AA+353TT+793AT 13.7148±3.3564 ab 0.1290±0.0530 ab
7-2 337AA+353TT+793TT 12.0009±2.2114 b 0.1028±0.0364 b
7-3 337AA+353TC+793AT 16.0900±3.6150 a 0.1532±0.0674 ab
7-4 337AA+353TC+793TT 14.7243±3.3069 ab 0.1583±0.0783 ab
7-5 337AT+353TT+793AT 15.3848±3.8763 ab 0.1515±0.0621 ab
7-6 337AT+353TT+793TT 11.6084±2.0201 b 0.1250±0.0230 ab
7-7 337AT+353TC+793AT 16.7491±3.0515 a 0.1808±0.0621 a

表8

不同SNP位点组合与马铃薯平均根系直径的关联分析"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
平均根系直径
Average diameter (mm)
8-1 314CC+337AA 0.4420±0.1073 a
8-2 314CC+337AT 0.3794±0.0992 a
8-3 314CT+337AA 0.3708±0.0600 a
8-4 314CT+337AT 0.3971±0.0698 a

表8

不同SNP位点组合与马铃薯平均根系直径的关联分析"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
平均根系直径
Average diameter (mm)
8-1 314CC+337AA 0.4420±0.1073 a
8-2 314CC+337AT 0.3794±0.0992 a
8-3 314CT+337AA 0.3708±0.0600 a
8-4 314CT+337AT 0.3971±0.0698 a

表9

不同SNP位点组合与马铃薯总根体积的关联分析"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
总根体积
Root volume (cm3)
9-1 152GG+353TT+620CC+793AT 0.1399±0.0441 bc
9-2 152GG+353TT+620CC+793TT 0.0967±0.0229 c
9-3 152GG+353TT+620CA+793AT 0.1500±0.0558 bc
9-4 152GG+353TT+620CA+793TT 0.1344±0.0561 bc
9-5 152GG+353TC+620CA+793AT 0.1343±0.0098 bc
9-6 152GG+353TC+620CA+793TT 0.2247±0.0198 a
9-7 152GA+353TC+620CC+793AT 0.1347±0.0494 bc
9-8 152GA+353TC+620CC+793TT 0.1754±0.0511 ab
9-9 152GA+353TC+620CA+793AT 0.2186±0.0543 a
9-10 152GA+353TC+620CA+793TT 0.1053±0.0553 bc

表9

不同SNP位点组合与马铃薯总根体积的关联分析"

基因型组合编号
Code of genotype combinations
基因型组合
Genotype combinations
总根体积
Root volume (cm3)
9-1 152GG+353TT+620CC+793AT 0.1399±0.0441 bc
9-2 152GG+353TT+620CC+793TT 0.0967±0.0229 c
9-3 152GG+353TT+620CA+793AT 0.1500±0.0558 bc
9-4 152GG+353TT+620CA+793TT 0.1344±0.0561 bc
9-5 152GG+353TC+620CA+793AT 0.1343±0.0098 bc
9-6 152GG+353TC+620CA+793TT 0.2247±0.0198 a
9-7 152GA+353TC+620CC+793AT 0.1347±0.0494 bc
9-8 152GA+353TC+620CC+793TT 0.1754±0.0511 ab
9-9 152GA+353TC+620CA+793AT 0.2186±0.0543 a
9-10 152GA+353TC+620CA+793TT 0.1053±0.0553 bc
[1] 李彦军, 耿伟, 史超, 许世霖, 孙振营. 马铃薯营养特性及产业发展前景. 中国果菜, 2017, 37(8):16-18.
Li Y J, Geng W, Shi C, Xu S L, Sun Z Y. Nutritional characteristics and industrial development prospect of potato. China Fruit Veget, 2017, 37(8):16-18 (in Chinese with English abstract).
[2] Villordon A Q, Ginzberg I, Firon N. Root architecture and root and tuber crop productivity. Trends Plant Sci, 2014, 19:419-425.
[3] 李秉钧, 颜耀, 吴文景, 吴鹏飞, 邹显花, 马祥庆. 环境因子对植物根系及其构型的影响研究进展. 亚热带水土保持, 2019, 31(3):41-45.
Li B J, Yan Y, Wu W J, Wu P F, Zou X H, Ma X Q. Study progress on the impact of environment factor to the plant root system and configuration. Subtrop Soil Water Conserv, 2019, 31(3):41-45 (in Chinese with English abstract).
[4] Henry A, Dixit S, Mandal N P, Anantha M S, Torres R, Kumar A. Grain yield and physiological traits of rice lines with the drought yield QTL qDTY12.1 showed different responses to drought and soil characteristics in upland environments. Funct Plant Biol, 2014, 41:1066-1077.
[5] Meijon M, Satbhai S B, Tsuchimatsu T, Busch W. Genome-wide association study using cellular traits identifies a new regulator of root development inArabidopsis. Nat Genet, 2014, 46:77-81.
[6] Porter G A, Bradbury W B, Sisson J A, Opena G B, McBurnie J C. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron J, 1999, 91:416-425.
[7] Fabeiro C, de Santa Olalla F M, de Juan J A. Yield and size of deficit irrigated potatoes. Agric Water Manage, 2001, 48:255-266.
[8] Yuan B Z, Nishiyama S, Kang Y. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric Water Manage, 2003, 63:153-167.
[9] Uga Y, Okuno K, Yano M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot, 2011, 62:2485-2494.
[10] Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet, 2013, 45:1097-1102.
[11] Guseman J M, Webb K, Srinivasan C, Dardick C. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J, 2017, 89:1093-1105.
[12] Waite J M, Collum T D, Dardick C. AtDRO1 is nuclear localized in root tips under native conditions and impacts auxin localization. Plant Mol Biol, 2020, 103:197-210.
[13] 梁文君. 马铃薯StDRO1基因的功能验证. 甘肃农业大学硕士学位论文,甘肃兰州, 2020.
Liang W J. Functional Verification of Potato StDRO1 Gene. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu,China, 2020 (in Chinese with English abstract).
[14] Spooner D M, Ghislain M, Simon R, Jansky S H, Gavrilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev, 2014, 80:283-383.
[15] Toubiana D, Cabrera R, Salas E, Maccera C, Franco Dos Santos G, Cevallos D, Lindqvist-Kreuze H, Lopez J M, Maruenda H. Morphological and metabolic profiling of a tropical-adapted potato association panel subjected to water recovery treatment reveals new insights into plant vigor. Plant J, 2020, 103:2193-2210.
[16] Deblonde P M K, Ledent J F. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur J Agron, 2001, 14:31-41.
[17] Ashraf A, Rehman O U, Muzammil S, Lon J, Naz A A, Rasool F, Ali G M, Zafar Y, Khan M R. Evolution of deeper rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS One, 2019, 14:e0214145.
[18] Omori F, Mano Y. QTL mapping of root angle in F2 populations from maize B73× teosinte Zea luxurians. Plant Root, 2007, 1:57-65.
[19] 蔡云婷. 玉米与墨西哥大刍草中DROs克隆及功能研究. 四川农业大学硕士学位论文,四川成都, 2019.
蔡云婷. 玉米与墨西哥大刍草中DROs克隆及功能研究. 四川农业大学硕士学位论文,四川成都, 2019.
Cai Y T. Cloning and Functional Study of DROs from Maize and Mexico teosinte. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2019 (in Chinese with English abstract).
Cai Y T. Cloning and Functional Study of DROs from Maize and Mexico teosinte. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2019 (in Chinese with English abstract).
[20] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47:780-786.
秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47:780-786.
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato. Acta Agron Sin, 2021, 47:780-786 (in Chinese with English abstract).
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato. Acta Agron Sin, 2021, 47:780-786 (in Chinese with English abstract).
[21] 梁文君, 孙超, 毕真真, 李鹏程, 秦天元, 张俊莲, 白江平. 马铃薯DRO1基因的克隆和逆境响应分析. 植物生理学报, 2020, 56:2448-2458.
梁文君, 孙超, 毕真真, 李鹏程, 秦天元, 张俊莲, 白江平. 马铃薯DRO1基因的克隆和逆境响应分析. 植物生理学报, 2020, 56:2448-2458.
Liang W J, Sun C, Bi Z Z, Li P C, Qin T Y, Zhang J L, Bai J P. Gene cloning and stress response analysis of DRO1 in potato. Plant Physiol J, 2020, 56:2448-2458 (in Chinese with English abstract).
Liang W J, Sun C, Bi Z Z, Li P C, Qin T Y, Zhang J L, Bai J P. Gene cloning and stress response analysis of DRO1 in potato. Plant Physiol J, 2020, 56:2448-2458 (in Chinese with English abstract).
[22] Hamilton J P, Hansey C N, Whitty B R, Stoffel K. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics, 2011, 12:1-12.
Hamilton J P, Hansey C N, Whitty B R, Stoffel K. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics, 2011, 12:1-12.
[23] Uitdewilligen J G A M L, Wolters A A, D’hoop B B, Borm T J A, Visser R G F, van Eck H J. A next-generation sequencing method for genotypingby-sequencing of highly heterozygous autotetraploid potato. PLoS One, 2013, 8:e62355.
Uitdewilligen J G A M L, Wolters A A, D’hoop B B, Borm T J A, Visser R G F, van Eck H J. A next-generation sequencing method for genotypingby-sequencing of highly heterozygous autotetraploid potato. PLoS One, 2013, 8:e62355.
[24] Zhu H C, Li C, Gao C X. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol, 2020, 21:661-677.
Zhu H C, Li C, Gao C X. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol, 2020, 21:661-677.
[25] Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17:402-410.
Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17:402-410.
[26] Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2008, 52:891-898.
Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2008, 52:891-898.
[27] Yoshihara T, Spalding E P, Iino M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J, 2013, 74:267-279.
Yoshihara T, Spalding E P, Iino M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J, 2013, 74:267-279.
[28] Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita M T. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell, 2017, 29:1984-1999.
Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita M T. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell, 2017, 29:1984-1999.
[29] Dong Z B, Jiang C, Chen X Y, Zhang T, Ding L, Song W B, Luo H B, Lai J S, Chen H B, Liu R Y. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol, 2013, 163:1306-1322.
Dong Z B, Jiang C, Chen X Y, Zhang T, Ding L, Song W B, Luo H B, Lai J S, Chen H B, Liu R Y. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol, 2013, 163:1306-1322.
[30] Dardick C, Callahan A, Horn R, Ruiz K B, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. PpeTAC1 promotes horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013, 75:618-630.
Dardick C, Callahan A, Horn R, Ruiz K B, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. PpeTAC1 promotes horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013, 75:618-630.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[4] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[7] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[8] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[9] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[10] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[11] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[12] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[13] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[14] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[15] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!