欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (3): 682-694.doi: 10.3724/SP.J.1006.2022.14015

• 耕作栽培·生理生化 • 上一篇    下一篇

黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征

谭雪莲1(), 郭天文1,*(), 胡新元2, 张平良1, 曾骏1, 刘晓伟1   

  1. 1甘肃省农业科学院旱地农业研究所/甘肃省水资源高效利用重点实验室, 甘肃兰州 730070
    2甘肃省农业科学院/甘肃省马铃薯种质资源创新工程实验室, 甘肃兰州 730070
  • 收稿日期:2021-01-26 接受日期:2021-06-16 出版日期:2021-07-14 网络出版日期:2021-07-14
  • 通讯作者: 郭天文
  • 作者简介:E-mail: tanxuelian_2002@163.com
  • 基金资助:
    国家公益性行业(农业)科研专项(201503120);甘肃省农业科学院科技创新专项计划项目(2017GAAS28);国家自然基金地区科学基金项目(31560172);甘肃省农业科学院科技支撑计划项目(2017GAAS41);甘肃省科技计划项目(20YF3WA010)

Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau

TAN Xue-Lian1(), GUO Tian-Wen1,*(), HU Xin-Yuan2, ZHANG Ping-Liang1, ZENG Jun1, LIU Xiao-Wei1   

  1. 1Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences/Key Laboratory of Efficient Utilization of Water in Dry Farming, Lanzhou 730070, Gansu, China
    2Gansu Academy of Agricultural Sciences/Innovation Engineering Laboratory of Potato Germplasm Resources of Gansu, Lanzhou 730070, Gansu, China
  • Received:2021-01-26 Accepted:2021-06-16 Published:2021-07-14 Published online:2021-07-14
  • Contact: GUO Tian-Wen
  • Supported by:
    Public Welfare(Agriculture)Scientific Research Project(201503120);Science and Technology Innovation Project of Gansu Academy of Agricultural Sciences(2017GAAS28);NSFC Regional Science Foundation Project(31560172);Science and Technology Support Plan of Gansu Academy of Agricultural Sciences(2017GAAS41);Science and Technology Project of Gansu Province (20YF3WA010).(20YF3WA010)

摘要:

本文探讨了土壤微生物对马铃薯连作的响应, 旨在揭示连作土壤退化的微生物特征。采用盆栽试验和MiSeq高通量测序技术相结合的方法, 以休耕(CK)和轮作(R_rh)为对照, 研究了马铃薯连作1年(1_rh)、3年(3_rh)和5年(5_rh)根际土壤微生物群落特征。结果表明, 与CK和轮作相比, 3_rh和5_rh土壤样品Ace指数、Chao指数、Shannon指数显著降低。与轮作相比, 马铃薯连作土壤细菌中变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria)相对丰度较高, 土壤真菌中子囊菌门(Ascomycota)相对丰度较低。细菌群落中, 较轮作, 1_rh、3_rh、5_rh气微菌属(Aeromicrobium)的数量分别增加258.01%、625.93%、76.04%, 节杆菌属(Arthrobacter)分别增加245.42%、1258.12%、58.89%, 链霉菌属(Streptomyces)分别增加203.83%、116.74%、311.61%。真菌群落中, 较轮作, 3_rh镰孢属(Fusarium)数量增加了225.00%, 5_rh毛壳属(Chaetomium)数量降低了31.58 %, 1_rh、3_rh、5_rh久浩酵母属(Guehomyces)的数量分别降低55.40%, 58.14%, 78.37%; 壶菌属(Spizellomyces)在休耕和轮作土壤中数量较多, 而在连作3年和5年土壤中数量很少, 接近检测底限。说明马铃薯长期连作降低了土壤微生物多样性, 微生物优势种群发生改变, 土壤微生物群落结构失衡。

关键词: 马铃薯, 连作, 微生物群落, 物种丰度, 有益微生物, 病原微生物

Abstract:

The response of soil microorganisms to continuous cropping of potato was discussed in this study, aiming at revealing the microbial characteristics of continuous cropping soil degradation. Pot experiments and MiSeq high-throughput sequencing technology were used to study the characteristics of microbial communities in the rhizosphere soil of potato continuous cropping for 1 year (1_rh), 3 years (3_rh), and 5 years (5_rh), with fallow (CK) and rotation (R_rh) as controls. The results showed that compared with CK and rotation, Ace index, Chao index, and Shannon index of 3_rh and 5_rh soil samples decreased significantly. Compared with rotation, the relative abundance of Proteobacteria, Actinobacteria, and Acidobacteria in soil bacteria of continuous potato cropping was higher, while the relative abundance of Ascomycota in soil fungi was lower. In the bacterial community, compared with rotation, the number of Aeromicrobium in 1_rh, 3_rh, 5_rh increased by 258.01%, 625.93%, 76.04%, Arthrobacter increased by 245.42%, 1258.12%, 58.89%, Streptomyces increased by 203.83%, 116.74%, and 311.61%, respectively. In the fungal community, compared with rotation, the number of Fusarium in 3_rh increased by 225.00%, the number of Chaetomium in 5_rh decreased by 31.58%, and the number of Guehomyces in 1_rh, 3_rh, and 5_rh decreased by 55.40%, 58.14%, and 78.37%, respectively. Spizellomyces had a large number in fallow and rotation soils, but a small number in continuous cropping soils for three years and five years, which was close to the detection limit. The results indicated that long-term continuous cropping of potato reduced the diversity of soil microorganisms, changed the dominant population of microorganisms, and unbalanced the structure of soil microbial community.

Key words: potato, continuous cropping, microbial community structure, species abundance, beneficial microorganisms, pathogenic microorganism

表1

试验设计及处理"

种植模式
Cropping pattern
处理代码
Treatment code
种植方法
Cultivation method
休耕
Fallow
CK 不种植作物的休耕土壤
Fallow soil where no crops were planted
马铃薯-小麦轮作
Potato-wheat rotation
R_rh 马铃薯种植1年的土壤上种植小麦
Wheat was planted on the soil where potato was planted for one year
马铃薯连作1年
Potato continuous cropping for one year
1_rh 马铃薯种植1年的土壤上继续种植马铃薯
Potatoes continued to grow potatoes on soil for one year
马铃薯连作3年
Potato continuous cropping for three years
3_rh 马铃薯种植3年的土壤上继续种植马铃薯
Potatoes continued to grow potatoes on soil for three years
马铃薯连作5年
Potato continuous cropping for five years
5_rh 马铃薯种植5年的土壤上继续种植马铃薯
Potatoes continued to grow potatoes on soil for five years

表2

97%相似度水平下土壤细菌和真菌菌群丰富度和多样性指数分析"

类别
Type
处理
Treatment
Reads OTUs Ace Chao Shannon
细菌 Bacteria CK 33,177±0.21 a 2253±0.15 a 2496±0.23 a 2502±0.32 a 6.67±0.0 1a
R_rh 36,151±0.23 a 2291±0.08 a 2545±0.15 a 2589±0.27 a 6.68±0.03 a
1_rh 20,981±0.28 b 1947±0.10 a 2285±0.17 a 2299±0.28 a 6.55±0.03 a
3_rh 16,610±0.24 b 1146±0.12 b 1545±0.19 b 1574±0.26 b 4.90±0.02 b
5_rh 38,178±0.22 a 2182±0.07 a 2444±0.20 a 2467±0.25 a 6.54±0.04 a
真菌 Fungi CK 15,547±0.48 a 565±0.13 a 664±0.65 b 648±0.38 b 4.00±0.01 a
R_rh 13,895±0.52 b 518±0.14 a 657±0.63 b 653±0.34b 4.26±0.03 a
1_rh 12,981±0.56 b 549±0.13 a 707±0.61 a 706±0.35 a 4.34±0.05 a
3_rh 11,064±0.49 c 385±0.16 b 541±0.59 c 520±0.36 c 3.54±0.02 b
5_rh 10,705±0.53 c 350±0.18 b 468±0.66 d 446±0.38 d 2.83±0.01 c

图1

土壤细菌OTU韦恩图 处理同表1。"

图2

土壤细菌门水平的群落组成和相对丰度 处理同表1。"

图3

土壤优势细菌纲水平的群落组成和相对丰度 处理同表1。"

表3

土壤细菌菌群分析"


Phylum

Class

Genus
相对丰度百分比Relative abundance (%)
CK R_rh 1_rh 3_rh 5_rh
放线菌门
Actinobacteria
放线菌纲
Actinobacteria
气微菌属
Aeromicrobium
0.21±0.03 c 0.10±0.01 c 0.36±0.02 b 0.73±0.01 a 0.18±0.01 c
壤霉菌属
Agromyces
0.26±0.01 b 0.06±0.01 d 0.17±0.01 c 0.40±0.02 a 0.24±0.01 b
节杆菌属
Arthrobacter
1.61±0.07 c 0.69±0.02 d 2.37±0.07 b 9.31±0.08 a 1.09±0.06 c
芽球菌属
Blastococcus
1.13±0.03 a 0.29±0.01 c 1.39±0.02 a 1.59±0.02 a 0.70±0.03 b
分枝杆菌属
Mycobacterium
0.4±0.015 a 0.10±0.01 b 0.47±0.03 a 0.38±0.01 a 0.30±0.01 a
链霉菌属
Streptomyces
0.32±0.04 b 0.13±0.02 c 0.41±0.02 b 1.71±0.06 a 0.56±0.02 b
假诺卡氏菌属
Pseudonocardia
0.32±0.01 a 0.04±0.01 b 0.28±0.01 a 0.25±0.01 a 0.16±0.01 a
变形菌门
Proteobacteria
α-变形菌纲
Alphaproteobacteria
红菌属
Rhodobium
0.54±0.02 a 0.07±0.01 b 0.32±0.02 a 0.40±0.02 a 0.44±0.02 a
红游动菌属
Rhodoplanes
0.27±0.02 a 0.1±0.010 b 0.34±0.02 a 0.17±0.01 b 0.19±0.01 b
博斯氏菌属
Bosea
0.18±0.01 a 0.09±0.01 b 0.20±0.03 a 0.22±0.04 a 0.19±0.01 a
慢生根瘤菌属
Bradyrhizobium
0.75±0.04 a 0.20±0.02 c 0.82±0.03 a 0.46±0.05 b 0.41±0.03 b
戴沃斯菌属
Devosia
0.22±0.08 b 0.10±0.01 c 0.36±0.06 b 0.54±0.07 a 0.60±0.02 a
生丝微菌属
Hyphomicrobium
0.24±0.06 a 0.03±0.01 b 0.24±0.04 a 0.14±0.03 a 0.18±0.03 a
根瘤菌属
Rhizobium
0.22±0.11 c 0.08±0.08 d 2.19±0.12 a 0.760.12 b 0.40±0.10 c
斯科曼氏球菌属
Skermanella
1.17±0.32 a 0.16±0.26 c 1.10±0.27 a 0.26±0.26 c 0.45±0.28 b
鞘脂单胞菌属
Sphingomonas
2.78±0.33 a 0.79±0.29 c 3.01±0.35 a 1.98±0.31 b 3.32±0.37 a
β-变形菌
Betaproteobacteria
产育菌属
Ramlibacter
0.16±0.04 b 0.06±0.01 c 0.30±0.02 a 0.14±0.03 b 0.38±0.06 a
δ-变形菌纲
Deltaproteobacteria
类固醇杆菌属
Steroidobacter
0.83±0.07 a 0.20±0.03 b 0.93±0.09 a 0.25±0.05 b 0.99±0.07 a

Phylum

Class

Genus
相对丰度百分比Relative abundance (%)
CK R_rh 1_rh 3_rh 5_rh
绿弯菌门
Chloroflexi
绿弯菌纲
Chloroflexia
玫瑰弯菌属
Roseiflexus
1.12±0.10 b 3.81±0.15 a 1.23±0.11 b 0.10±0.09 c 0.50±0.09 c
芽单胞菌门
Gemmatimonadetes
芽单胞菌纲
Gemmatimonadetes
芽单胞菌属
Gemmatimonas
0.42±0.06 a 0.10±0.01 b 0.31±0.04 a 0.08±0.03 b 0.34±0.07 a
硝化螺旋菌门
Nitrospirae
硝化螺旋菌纲
Nitrospira
硝化螺旋菌属
Nitrospira
2.15±0.21 a 0.28±0.09 b 1.84±0.26 a 0.42±0.08 b 1.71±0.24 a
厚壁菌门
Firmicutes
芽孢杆菌纲
Bacilli
芽孢杆菌属
Bacillus
1.66±0.12 a 0.19±0.06 d 0.88±0.06 b 0.30±0.05 c 0.83±0.07 b
合计 Total 16.99±0.45 a 7.66±0.41 c 19.53±0.47 a 20.59±0.44 a 14.13±0.43 b

图4

土壤真菌OTU韦恩图 处理同表1。"

图5

土壤真菌门水平的群落组成和相对丰度 处理同表1。"

图6

土壤真菌纲水平的群落组成和相对丰 处理同表1。"

表4

不同连作土壤真菌菌群分析"


Class

Genus
相对丰度百分比Relative abundance (%)
CK R_rh 1_rh 3_rh 5_rh
座囊菌纲
Dothideomycetes
光黑壳属
Preussia
0.26±0.04 a 0.05±0.01 b 0.32±0.03 a 0.04±0.01 b 0.03±0.01 b
核菌纲
Pyrenomycetes
叉丝单囊壳属
Podosphaera
0 0 0.02±0.01 a 0.02±0.01 a 0.01±0.01 a
散囊菌纲
Eurotiomycetes
青霉属
Penicillium
0.10±0.02 a 0.08±0.06 a 0.10±0.05 a 0.01±0.01 a 0.01±0.01 a
梭孢壳属
Thielavia
2.66±0.56 b 2.09±0.48 b 2.74±0.52 b 5.74±0.49 a 6.69±0.54 a
粪壳菌纲
Sordariomycetes
镰孢属
Fusarium
0.71±0.09 b 0.84±0.07 b 0.78±0.08 b 2.73±0.12 a 0.11±0.06 b
毛壳属
Chaetomium
0.78±0.06 a 0.19±0.02 c 0.51±0.01 b 0.52±0.06 b 0.25±0.03 c
子囊菌纲
Ascomycetes
子囊菌属
Ascomycota_norank
1.54±0.29 a 0.83±0.26 b 1.23±0.27 a 0.61±0.25 b 0.17±0.24 c
赤霉菌属
Gibberella
0.32±0.08 b 0.49±0.09 a 0.37±0.09 b 0.50±0.12 a 0.04±0.07 c
壶菌纲
Chrtridiomycetes
壶菌属
Spizellomyces
0.17±0.03 b 0.93±0.05 a 0.13±0.05 b 0.01±0.01 b 0.01±0.01 b
腐质霉属
Humicola
0.29±0.10 a 0.16±0.13 b 0.26±0.15 a 0.19±0.11 ab 0.32±0.16 a
丝胞纲
Hyphomycetes
矛束霉属
Doratomyces
0.03±0.01 b 0.03±0.01 b 0.12±0.04 b 0.06±0.01 b 1.80±0.06 a
链格孢属
Alternaria
0.33±0.22 c 2.25±0.26 a 2.91±0.25 a 1.20±0.21 b 1.07±0.20 b
银耳纲
Tremellomycetes
隐球菌属
Cryptococcus
1.93±0.36 a 0.67±0.30 b 1.36±0.32 a 0.33±0.29 b 0.29±0.29 b
合计
Total
9.14±0.68 ab 8.61±0.62 b 10.85±0.64 a 11.94±0.70 a 10.80±0.66 a

图7

不同连作土壤马铃薯枯萎病发病率比较 处理同表1。"

[1] 张绪成, 王红丽, 于显枫, 候慧芝, 方彦杰, 马一凡. 半干旱区全膜覆盖垄沟间作种植马铃薯和豆科作物的水热及产量效应. 中国农业科学, 2016, 49:468-481.
Zhang X C, Wang H L, Yu X F, Hou H Z, Fang Y J, Ma Y F. The study on the effect of potato and beans intercropping with whole field plastics mulching and ridge-furrow planting on soil thermal-moisture status and crop yield on semi-arid area. Sci Agric Sin, 2016, 49:468-481 (in Chinese with English abstract).
[2] 周华兰, 彭亚丽, 李婷, 谢鹰飞, 唐丽梅, 王榕, 熊兴耀, 王万兴, 胡新喜. 马铃薯连作对土壤理化性质和生物学特性的影响. 湖南农业大学学报(自然科学版), 2019, 45:611-616.
Zhou H L, Peng Y L, Li T, Xie Y F, Tang L M, Wang R, Xiong X Y, Wang W X, Hu X X. Effects of potato continuous cropping on soil physicochemical and biological properties. J Hunan Agric Univ (Nat Sci Edn), 2019, 45:611-616 (in Chinese with English abstract).
[3] Wu A L, Jiao X Y, Fan F F, Wang J S, Guo J, Dong E W, Wang L G, Shen X M. Bacillus amyloliquefaciens in altering the microbial composition Bacillus amyloliquefaciens in altering the microbial composition. Plant Growth Regul, 2019, 89:299-308.
doi: 10.1007/s10725-019-00533-y
[4] 杨敏, 和明东, 段杰, 郑元仙, 王继明, 钟宇, 黄飞燕, 童文杰, 邓小鹏, 莫笑晗, 陈小龙, 周厚发, 余磊, 何元胜. 生物炭对连作烤烟根际土壤酚酸类物质及微生物群落结构的影响. 福建农业学报, 2020, 35(1):103-110.
Yang M, He M D, Duan J, Zheng Y X, Wang J M, Zhong Y, Huang F Y, Tong W J, Deng X P, Mo X H, Chen X L, Zhou H F, Yu L, He Y S. Effects of biochar addition on phenolic acids and microbial community in rhizosphere soil at continuous cropping field of tobacco. Fujian J Agric Sci, 2020, 35(1):103-110 (in Chinese with English abstract).
[5] Egamberdieva D, Renella G, Wirth S, Islam R. Secondary salinity effects on soil microbial biomass. Trans CSAE, 2010, 46:445-449.
[6] Glick B R. Soil microbes and sustainable agriculture. Trans CSAE, 2018, 28:167-169.
[7] Xu N, Tan G G, Wang H Y, Gai X P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol, 2016, 74:1-8.
doi: 10.1016/j.ejsobi.2016.02.004
[8] Gao J, Pei H, Xie H. Synergistic effects of organic fertilizer and corn straw on microorganisms of pepper continuous cropping soil in China. Bioengineered, 2020, 11:1258-1268.
doi: 10.1080/21655979.2020.1840753
[9] Zhang P, Chen X, Wei T, Yang Z, Jia Z K, Yang B P, Han Q F, Ren X L. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Tillage Res, 2016, 160:65-72.
doi: 10.1016/j.still.2016.02.006
[10] 李瑞琴, 刘星, 邱慧珍, 张文明, 张春红, 王蒂, 张俊莲, 沈其荣. 发生马铃薯立枯病土壤中立枯丝核菌的荧光定量PCR快速检测. 草业学报, 2013, 22(5):136-144.
Li R Q, Liu X, Qiu H Z, Zhang W M, Zhang C H, Wang D, Zhang J L, Shen Q R. Rapid detection of Rhizoctonis in rhizosphere soil of potato using real-time quantitative PCR. Acta Pratac Sin, 2013, 22(5):136-144 (in Chinese with English abstract).
[11] Yao H Y, Jiao X D, Wu F Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant Soil, 2006, 284:195-203.
doi: 10.1007/s11104-006-0023-2
[12] Xiong W, Zhao Q, Zhao J, Xun W, Li R, Zhang R, Wu H, Shen Q. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla grown soil as revealed by deep pyrosequencing. Microbial Ecol, 2015, 70:209-218.
doi: 10.1007/s00248-014-0516-0
[13] Perez-Brandan C, Arzeno J L, Huidobro J, Conforto C, Vargas- Gil S. The effect of crop sequences on soil microbial, chemical and physical indicators and its relationship with soybean sudden death syndrome (complex of Fusarium species). Spanish J Agric Res, 2014, 12:252-264.
doi: 10.5424/sjar/2014121-4654
[14] Zhang X, Zhang R, Gao J, Wang X, Fan F, Ma X, Yin H, Zhang C, Feng K, Deng Y. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol Biochem, 2017, 104:208-217.
doi: 10.1016/j.soilbio.2016.10.023
[15] Meriles J M, Gil S V, Conforto C, Figoni G, Lovera E, March G J, Guzmán C A. Soil microbial communities under different soybean cropping systems: characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Tillage Res, 2009, 103:271-281.
doi: 10.1016/j.still.2008.10.008
[16] 孟品品, 刘星, 邱慧珍, 张文明, 张春红, 王蒂, 张俊莲, 沈其荣. 连作马铃薯根际土壤真菌种群结构及其生物效应. 应用生态学报, 2012, 23:3079-3086.
Meng P P, Liu X, Qiu H Z, Zhang W M, Zhang C H, Wang D, Zhang J L, Shen Q R. Fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato. Chin J Appl Ecol, 2012, 23:3079-3086 (in Chinese with English abstract).
[17] 刘星, 邱慧珍, 王蒂, 张俊莲, 沈其荣. 甘肃省中部沿黄灌区轮作和连作马铃薯根际土壤真菌群落的结构性差异评估. 生态学报, 2015, 35:3938-3948.
Liu X, Qiu H Z, Wang D, Zhang J L, Shen Q R. Evaluation on fungal community structure of rhizosphere soils of potato under rotation and continuous cropping systems in Yellow River irrigation areas of middle Gansu province. Acta Ecol Sin, 2015, 35:3938-3948 (in Chinese with English abstract).
[18] Mendes R, Garbeva P, Raaijmakers J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev, 2013, 37:634-663.
doi: 10.1111/1574-6976.12028
[19] Berendsen R L, Pieterse M J, Bakker P A H M. The rhizosphere microbiome and plant health. Trends Plant Sci, 2012, 17:478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542
[20] 沈宝云, 刘星, 王蒂, 梦品品, 张俊莲, 邱慧珍. 甘肃省中部沿黄灌区连作对马铃薯植株生理生态特性的影响. 中国生态农业学报, 2013, 21:689-699.
Shen B Y, Liu X, Wang D, Meng P P, Zhang J L, Qiu H Z. Effects of continuous cropping on potato eco-physiological characteristics in the Yellow River irrigation area of the central Gansu Province. Chin J Eco-Agric, 2013, 21:689-699 (in Chinese with English abstract).
[21] Oliver J D. The viable but nonculturable state in bacteria. J Microbiol, 2005, 43:93-100
[22] 马玲, 马琨, 杨桂丽, 牛红霞, 代晓华. 马铃薯连作栽培对土壤微生物多样性的影响. 中国生态农业学报, 2015, 23:589-596.
Ma L, Ma K, Yang G L, Niu H X, Dai X H. Effects of continuous potato cropping on the diversity of soil microorganisms. Chin J Eco-Agric, 2015, 23:589-596 (in Chinese with English abstract).
[23] 马琨, 张丽, 杜茜, 宋乃平. 马铃薯连作栽培对土壤微生物群落的影响. 水土保持学报, 2010, 24(4):229-233.
Ma K, Zhang L, Du Q, Song N P. Effect of potato continuous cropping on soil microorganism community structure and function. J Soil Water Conserv, 2010, 24(4):229-233 (in Chinese with English abstract).
[24] 李国庆, 郭华春. 连作对马铃薯根际土壤细菌群落结构的影响. 分子植物育种, 2014, 12:914-928.
Li G Q, Guo H C. Effect of potato continuous cropping on the rhizosphere soil bacteria community structure. Mol Plant Breed, 2014, 12:914-928 (in Chinese with English abstract).
[25] Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rDNA genes. Appl Environ Microbiol, 2006, 72:1719-1728.
doi: 10.1128/AEM.72.3.1719-1728.2006
[26] 李昌明. 青藏高原多年冻土区土壤微生物及其与环境关系的研究. 兰州大学硕士学位论文, 甘肃兰州, 2012.
Li C M. Phylogenetic and Functional Diversity of Bacterial Community in Tibet Plateau Permafrost Soils. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2012 (in Chinese with English abstract).
[27] Glaring M A, Vester J K, Lylloff J E, Al-Soud W A, Sørensen S J, Stougaard P. Microbial diversity in a permanently cold and alkaline environment in greenland. PLoS One, 2015, 10:e0124863.
doi: 10.1371/journal.pone.0124863
[28] Mendes R, Garbeva P, Raaijmakers J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev, 2013, 37:634-663.
doi: 10.1111/1574-6976.12028
[29] 张丽红, 符建平, 高丽红, 吕建. 不同蔬菜轮作对日光温室土壤微生物的影响. 中国农学通报, 2010, 26(1):140-144.
Zhang L H, Fu J P, Gao L H, Lyu J. Effects of different rotation models on soil micro-organisms in greenhouse. Chin Agric Sci Bull, 2010, 26(1):140-144 (in Chinese with English abstract).
[30] 李继平, 李敏权, 惠娜娜, 王立, 马永强, 漆永红. 马铃薯连作田土壤中主要病原真菌的种群动态变化规律. 草业学报, 2013, 22(4):147-152.
Li J P, Li M Q, Hui N N, Wang L, Ma Y W, Qi Y H. Population dynamics of main fungal pathogens in soil of continuously cropped potato. Acta Pratac Sin, 2013, 22(4):147-152 (in Chinese with English abstract).
[31] Zhang J X, Xue A G, Zhang H J, Nagasawa A E, Tambong J T. Response of soybean cultivars to root rot caused by Fusarium species. Can J Plant Sci, 2010, 90:767-776.
doi: 10.4141/CJPS09133
[32] Wang J L, Li X L, Zhang J L, Yao T, Wei D. Effect of root exudates on beneficial microorganisms-evidence from a continuous soybean monoculture. Plant Ecol, 2013, 213:1883-1892.
doi: 10.1007/s11258-012-0088-3
[33] Kamper J, Kahmann R, Bolker M, Ma L J. Ustilago maydis Ustilago maydis. Nature, 2006, 444:97-101.
doi: 10.1038/nature05248
[34] Huang L F, Song L X, Xia X J, Mao W H, Shi Z. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. Trans CSAE, 2013, 39:232-242.
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[6] 王亚梁, 朱德峰, 张玉屏, 陈若霞, 向镜, 陈惠哲, 谌江华, 汪峰. 连作杂交晚稻精准条播长秧龄机插的生长及产量特性分析[J]. 作物学报, 2022, 48(1): 215-225.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[10] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[11] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[12] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[13] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[14] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[15] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!