欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1658-1668.doi: 10.3724/SP.J.1006.2022.14115

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用WGCNA筛选马铃薯块茎发育候选基因

荐红举1,2,3(), 张梅花1(), 尚丽娜1, 王季春1,2,3, 胡柏耿4, 吕典秋1,2,3,*()   

  1. 1西南大学农学与生物科技学院, 重庆 400715
    2南方山地农业教育部工程研究中心, 重庆 400715
    3薯类生物学与遗传育种重庆市重点实验室, 重庆 400715
    4国家马铃薯工程技术研究中心, 山东德州 253600
    5S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue 010011, Astana, Republic of Kazakhstan
  • 收稿日期:2021-07-02 接受日期:2021-10-19 出版日期:2022-07-12 网络出版日期:2021-11-15
  • 通讯作者: 吕典秋
  • 作者简介:荐红举, E-mail: hjjian518@swu.edu.cn
    张梅花, E-mail: mhzhang77@163.com第一联系人:

    ** 同等贡献

  • 基金资助:
    科技部科技伙伴计划项目(KY201904016);国家重点研发计划项目(2018YFE0127900);国家自然科学基金项目(32101659);西南大学人才引进项目(SWU019008);西南大学种质创新专项研究项目资助

Screening candidate genes involved in potato tuber development using WGCNA

JIAN Hong-Ju1,2,3(), ZHANG Mei-Hua1(), SHANG Li-Na1, WANG Ji-Chun1,2,3, HU Bai-Geng4, Vadim Khassanov5, LYU Dian-Qiu1,2,3,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
    3Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
    4National Engineering Research Center for Potato, Dezhou 253600, Shandong, China
    5S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue 010011, Astana, Republic of Kazakhstan
  • Received:2021-07-02 Accepted:2021-10-19 Published:2022-07-12 Published online:2021-11-15
  • Contact: LYU Dian-Qiu
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    Science and Technology Partnership Program, Minis-try of Science and Technology of China(KY201904016);National Key Research and Development Program of China(2018YFE0127900);National Natural Science Foundation of China(32101659);Talent Introduction Program of Southwest University Project(SWU019008);Special research project on Germplasm Innovation of Southwest University

摘要:

块茎是马铃薯的主要经济器官, 解析其形成和发育机制对于马铃薯高产育种具有重要意义。虽然结薯相关基因已有报道, 但仍有大量参与结薯的基因有待进一步挖掘和鉴定。随着测序技术的不断革新和发展, 转录组数据愈加丰富和繁杂, 利用加权共表达网络分析(weighted gene co-expression network analysis, WGCNA)筛选特定性状、组织或发育阶段相关基因的方法被广泛应用。本研究利用WGCNA分别对马铃薯DM 1-3 516 R44 (DM)材料以及RH89-039-16 (RH)材料各15个组织器官的转录组数据进行分析, 构建共表达网络, 筛选与块茎发育相关的共表达模块。对筛选表达模块中的基因进行GO (Gene Ontology)和KEGG (Kyoto Encyclopedia of Genes and Genomes)通路富集分析。以模块中连通度前10的基因为核心基因, 用PGSC数据库和NCBI数据库进行注释, 并利用qRT-PCR进行验证。通过WGCNA分析, 在DM和RH材料中均得到13个共表达模块, 其中DM材料的Cyan模块和RH材料的Black模块与块茎显著相关。分析表明, 2个模块的基因显著富集在激素代谢、淀粉和蔗糖代谢以及细胞形成等相关过程中。此外, 在Cyan中注释到已被证实与块茎发育相关的基因StGA2ox1, 并且在共表达分析中StGA2ox1与模块中10个核心基因均相互关联。核心基因的qRT-PCR结果与RNA-Seq的结果基本一致。本研究运用WGCNA方法鉴别了2个块茎发育相关的共表达模块, 筛选出多个与块茎发育相关的候选基因, 为马铃薯高产育种奠定基础。

关键词: 马铃薯, WGCNA, 块茎发育, 调控网络, 核心基因

Abstract:

Tuber is the main economic organ of potato. It is of great significance to illustrate its formation and development mechanism for high yield breeding of potato. Although some related genes have been reported, there are still a large number of genes involved in tuber production which need to be further excavated and identified. With the continuous innovation and development of sequencing technology, transcriptome data has become more abundant and complicated. The method of screening genes related to specific traits, tissues or developmental stages using Weighted Gene Co-expression Network Analysis (WGCNA) has been widely used. In this study, to construct co-expression networks and screen co-expression modules related to tuber development, WGCNA was used to analyze transcriptome data of potato DM 1-3516 R44 (DM) material and RH89-039-16 (RH) material from 15 tissues and organs, respectively. GO and KEGG pathway enrichment were performed on the genes in the screening expression module. The top 10 genes in the module were taken as the hub genes, annotated by PGSC database and NCBI, and verified by qRT-PCR. 13 co-expression modules were obtained in both DM and RH materials, among which the Cray module in DM material analysis and the Black module in RH material analysis were significantly correlated with tubers by WGCNA. The analysis showed that the genes of the two modules were significantly enriched in related processes such as hormone metabolism, starch and sucrose metabolism, and cell formation. In addition, gene StGA2ox1, which had been proved to be related to tuber development, was noted in Cyan, and StGA2ox1 was correlated with 10 hub genes in the module in the co-expression analysis. The qRT-PCR results of the hub genes were basically consistent with the results of RNA-seq. In this study, two co-expression modules related to tuber development were identified by WGCNA, and several candidate genes related to tuber development were screened out, which laid a foundation for high yield potato breeding.

Key words: potato, WGCNA, tuber development, regulatory network, hub genes

表1

核心基因定量引物"

模块
Module
基因编号
Gene ID
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
Cyan PGSC0003DMG400021191 GTGCTGCTTAGGAATATGGTTG GAATGAAGATCCGAACAGCTTC
Cyan PGSC0003DMG400005704 CGACAACGATGAAGAAGATGAC ATGACGATGGTACTCTCTTCAC
Cyan PGSC0003DMG400005659 CAACGATTGGAGGCATTTCTAG GAGCTCATATGCAGTAGTTTGC
Cyan PGSC0003DMG400017696 AGTCGCAGTGATCGTGAATA CCACCACCATACCTATCATCTC
Cyan PGSC0003DMG401009395 GATGGCCGTATTCTTGTATCAT AGACCTGTTATGGTTCCAAATG
Cyan PGSC0003DMG400021095 CTTTTGGGGACTTGTGAAAGAG CTGGACATGGTGGATAGTGATT
Black PGSC0003DMG400030431 CTAAGGGTCATTACACTGAGGG CTTGTAGGCAGTCACAGTTTTC
Black PGSC0003DMG400010293 ATTTAGGCTTCTTTGTCTTGCG CGCCATCAAGTCAAATAAACCA
Black PGSC0003DMG400009401 ACAAGTGCTTACTATCGAGGAG GTCAGTATGATCTCTGAGCTCC
Black PGSC0003DMG400007997 TCCCTTCATTCCCTGTCTTA AATGTAGGCTCCACTTCCAC
Black PGSC0003DMG400008491 CTCTCCAACTGTGAAGTCTAGG AAGGAGAACATGATTTCCGTCT
Black PGSC0003DMG400012238 CAATGTCAAGGCCAAGATTCAA AAGTCGACTCTTTCTGGATGTT

图1

基因聚类树与模块构建 A: DM材料; B: RH材料。A: DM material; B: RH material."

图2

不同模块包含的基因数量 A: DM材料; B: RH材料。A: DM material; B: RH material."

图3

基因共表达网络模块与性状的关联热图 A: DM材料; B: RH材料。横轴表示不同组织, 纵轴表示每一个模块的特征向量。红色的格子代表性状与模块具有正相关性, 蓝色的格子代表性状与模块具有负相关性。"

图4

目标模块内基因GO富集分析 A: DM材料的Cyan模块; B: RH材料的Black模块。"

图5

目标模块内基因KEGG富集分析 A: DM材料的Cyan模块; B: RH材料的Black模块。"

图6

Cyan和Black模块内的基因共表达网络及其核心基因"

表2

不同模块中核心基因的功能注释"

模块
Module
核心基因
Hub gene
拟南芥同源基因
Homologous gene in Arabidopsis thaliana
基因注释
Gene annotation
Cyan PGSC0003DMG400021191 AT1G30480 DNA损伤修复/耐受蛋白DRT111, 叶绿体 DNA-damage-repair/toleration protein DRT111, chloroplastic
Cyan PGSC0003DMG400004278 AT3G63390 功能未知的保守基因
Conserved gene of unknown function
Cyan PGSC0003DMG400005704 AT1G03280 转录起始因子IIE亚基α样亚型X2
Transcription initiation factor IIE subunit alpha-like isoform X2
Cyan PGSC0003DMG400005659 AT3G18165 Pre-mRNA剪接因子SPF27同源物
Pre-mRNA-splicing factor SPF27 homolog
Cyan PGSC0003DMG400031139 AT1G71780 功能未知的保守基因
Conserved gene of unknown function
Cyan PGSC0003DMG400011912 功能未知的基因
Gene of unknown function
Cyan PGSC0003DMG400017696 AT3G26420 RNA结合蛋白RZ-1
RNA binding protein RZ-1
Cyan PGSC0003DMG400006479 Myb-like蛋白A同工型X2
Myb-like protein A isoform X2
Cyan PGSC0003DMG400000409 AT4G01560 RNA加工因子1
RNA processing factor 1
Cyan PGSC0003DMG401009395 AT4G28450 DDB1和CUL4相关因子13
DDB1- and CUL4-associated factor 13
Cyan PGSC0003DMG400021095 AT1G30040 赤霉素2-氧化酶1
Gibberellin 2-oxidase 1 (GA2OX1)
Black PGSC0003DMG400030431 AT2G29550 β微管蛋白2
Beta-tubulin 2
模块
Module
核心基因
Hub gene
拟南芥同源基因
Homologous gene in Arabidopsis thaliana
基因注释
Gene annotation
Black PGSC0003DMG401002397 AT5G56670 核糖体蛋白S30
Ribosomal protein S30
Black PGSC0003DMG400017722 AT1G35780 功能未知的保守基因
Conserved gene of unknown function
Black PGSC0003DMG400010293 AT2G20490 H/ACA核糖核蛋白复合物亚基3-like蛋白同工型X2
H/ACA ribonucleoprotein complex subunit 3-like protein isoform X2
Black PGSC0003DMG400009401 AT5G60860 Ras相关蛋白RABA1f
Ras-related protein RABA1f
Black PGSC0003DMG400003723 AT5G39600 功能未知的保守基因
Conserved gene of unknown function
Black PGSC0003DMG400007997 AT2G34520 核糖体蛋白S14, 线粒体
Rbosomal protein S14, mitochondrial
Black PGSC0003DMG400007257 AT1G67785 功能未知的保守基因
Conserved gene of unknown function
Black PGSC0003DMG400008491 AT2G38160 内切几丁质酶A
Endochitinase A
Black PGSC0003DMG400012238 AT3G52590 泛素超群, 核糖体蛋白L40e
Ubiquitin supergroup, ribosomal protein L40e

图7

核心基因的qRT-PCR验证 RNA-Seq的相对表达量 = log10 (FPKM+1)。"

[1] Jackson S D. Multiple signaling pathways control tuber induction in potato. Plant Physiol, 1999, 119: 1-8.
[2] Lafta A M, Lorenzen J H. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol, 1995, 109: 637-643.
pmid: 12228617
[3] Kolachevskaya O O, Lomin S N, Arkhipov D V, Romanov G A. Auxins in potato: molecular aspects and emerging roles in tuber formation and stress resistance. Plant Cell Rep, 2019, 38: 681-698.
doi: 10.1007/s00299-019-02395-0 pmid: 30739137
[4] Lehretz G G, Sonnewald S, Hornyik C, Corral J M, Sonnewald U. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Curr Biol, 2019, 29: 1614-1624.
doi: S0960-9822(19)30425-7 pmid: 31056391
[5] Kondhare K R, Natarajan B, Banerjee A K. Molecular signals that govern tuber development in potato. Int J Dev Biol, 2020, 64: 133-140.
doi: 10.1387/ijdb.190132ab
[6] Cheng L X, Wang Y P, Liu Y S, Zhang Q Q, Gao H H, Zhang F. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro. Physiol Plant, 2018, 163: 103-123.
doi: 10.1111/ppl.12670
[7] Evíková H, Maková P, Tarkowská D, Maek T, Lipavská H. Carbohydrates and gibberellins relationship in potato tuberization. J Plant Physiol, 2017, 214: 53-63.
doi: 10.1016/j.jplph.2017.04.003
[8] Martínez-García J F, García-Martínez J L, Bou J, Prat S. The interaction of gibberellins and photoperiod in the control of potato tuberization. J Plant Growth Regul, 2001, 20: 377-386.
doi: 10.1007/s003440010036
[9] Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Bachem C W B. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J, 2010, 52: 362-373.
doi: 10.1111/j.1365-313X.2007.03245.x
[10] Jordi B T, Martínez-García J F, Luis G M J, Salomé P, Blazquez M A. Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS One, 2011, 6: e24458.
doi: 10.1371/journal.pone.0024458
[11] Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Bachem C W B. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J, 2010, 52: 362-373.
doi: 10.1111/j.1365-313X.2007.03245.x
[12] Jackson S D. Regulation of transcript levels of a potato gibberellin 20-oxidase gene by light and phytochrome B. Plant Physiol, 2000, 124: 423-430.
pmid: 10982455
[13] Xu X, Vreugdenhil D, Lammeren A A M V. Cell division and cell enlargement during potato tuber formation. J Exp Bot, 1998, 49: 573-582.
doi: 10.1093/jxb/49.320.573
[14] Fujino K, Koda Y, Kikuta Y. Reorientation of cortical microtubules in sup-apical region during tuberization in single-node stem segments of potato in culture. Plant Cell Physiol, 1995, 36: 891-895.
doi: 10.1093/oxfordjournals.pcp.a078835
[15] Taiz L. Plant cell expansion: egulation of cell well mechanical properties. Annu Rev Plant Physiol, 2003, 35: 585-657.
doi: 10.1146/annurev.pp.35.060184.003101
[16] Sanz M J, Mingo-Castel A, Lammeren A A M V, Vreugdenhil D. Changes in the microtubular cytoskeleton precede in vitro tuber formation in potato. Protoplasma, 1996, 191: 46-54.
doi: 10.1007/BF01280824
[17] Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bachem C W B. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Plant Signal Behav, 2012, 63: 4539-4547.
[18] Zhang B, Horvath S. A general framework for weighted geneco-expression network analysis. Plant Signal Behav, 2005, 4: 1128.
doi: 10.4161/psb.4.12.9942
[19] Downs G S, Bi Y M, Colasanti J, Wu W, Chen X, Zhu T, Rothstein S J, Lukens L N. A developmental transcriptional network for maize defines coexpression modules. Plant Physiol, 2013, 161: 1830-1843.
doi: 10.1104/pp.112.213231
[20] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[21] Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z. Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks1. Plant Physiol, 2014, 165: 1062-1075.
pmid: 24828307
[22] Luo Y, Pang D, Jin M, Chen J, Wang Z. Identification of plant hormones and candidate hub genes regulating flag leaf senescence in wheat response to water deficit stress at the grain-filling stage. Plant Direct, 2019, 3: e00152.
[23] 林行众. 黄瓜共表达基因模块的识别及其特点分析.南京农业大学硕士学位论文, 江苏南京, 2015.
Lin X Z. Identification and Characterization of Co-expression Modules in Cucumber (Cucumis sativus L.). MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China 2015. (in Chinese with English abstract)
[24] 秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020, 46: 1033-1051.
doi: 10.3724/SP.J.1006.2020.94130
Qin T Y, Sun C, Bi Z Z, Liang W J, Li P C, Zhang J L, Bai J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agron Sin, 2020, 46: 1033-1051. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94130
[25] Ran Z, Zhu Y, Jiao Z, Fang Z, Ma D. Transcriptome-wide identification and characterization of potato circular rnas in response to pectobacterium carotovorum subspecies brasiliense infection. Int J Mol Sci, 2018, 19: 71.
doi: 10.3390/ijms19010071
[26] Leviatan N, Alkan N, Leshkowitz D, Robert F, Shin-Han S. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray. PLoS One, 2018, 8: e66511.
doi: 10.1371/journal.pone.0066511
[27] Staiger D, Brown J W S. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell, 2013, 25: 3640-3656.
doi: 10.1105/tpc.113.113803
[28] Quesada V, Macknight R, Dean C, Simpson G G. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J, 2003, 22: 3142-3152.
pmid: 12805228
[29] 张玲. 生长素和细胞分裂素在马铃薯块茎发育中的作用. 中国农业信息, 2014, (11): 14.
Zhang L. Roles of auxin and cytokinin in potato tuber development. China Agric Inf, 2014, (11): 14. (in Chinese)
[30] Raspor M, Motyka V, Ninković S, Dobrev P I, Malbeck J, Ćosić T, Cingel A, Savić J, Tadić V, Dragićević I Č. Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics. Sci Rep, 2020, 10: 3437.
doi: 10.1038/s41598-020-60412-9
[31] Xu X, Lammeren A A M V, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acide, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol, 1998, 117: 575-584.
pmid: 9625710
[32] Escaclante B, Langille A R. Photoperiod, temperature, gibberellin, and anti-gibberellin affect tuberization of potato stem segments in vitro. HortScience, 1998, 33: 701-703.
doi: 10.21273/HORTSCI.33.4.701
[33] Lee J H, Terzaghi W, Gusmaroli G, Charron J B F, Yoon H J, Chen H, He Y J, Xiong Y, Deng X W. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell, 2008, 20: 152-167.
doi: 10.1105/tpc.107.055418
[34] Lee J H, Yoon H J, Terzaghi W, Martinez C, Dai M, Li J, Byun M O, Deng X W. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell, 2010, 22: 1716-1732.
doi: 10.1105/tpc.109.073783
[35] Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng X W. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell, 2008, 20: 1437-1455.
doi: 10.1105/tpc.108.058891 pmid: 18552200
[36] Chen H, Huang X, Gusmaroli G, Terzaghi W, Lau O S, Yanagawa Y, Zhang Y, Li J, Lee J H, Zhu D M, Deng X W. Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell, 2010, 22: 108-123.
doi: 10.1105/tpc.109.065490
[37] Kim Y O, Pan S, Jung C H, Kang H. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol, 2007, 48: 1170-1181.
doi: 10.1093/pcp/pcm087
[38] Kim W Y, Kim J Y, Jung H J, Oh S H, Han Y S, Kang H. Comparative analysis of Arabidopsis zinc finger-containing glycine-rich RNA-binding proteins during cold adaptation. Plant Physiol Biochem, 2010, 48: 866-872.
doi: 10.1016/j.plaphy.2010.08.013
[39] Zhe W, Zhu D, Lin X, Jin M, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X F, Tsuge T, Dean C, Aoyama T, Gu H, Qu L J. RNA binding proteins RZ-1B and RZ-1C Play critical roles in regulating pre-mRNA splicing and gene expression during development in Arabidopsis. Plant Cell, 2016, 28: 55-73.
doi: 10.1105/tpc.15.00949
[40] Yoshikawa M, Yang G, Kawaguchi K, Komatsu S. Expression analyses of β-tubulin isotype genes in rice. Plant Cell Physiol, 2003, 44: 1202-1207.
pmid: 14634157
[41] Spokevicius A V, Southerton S G, Macmillan C P, Qiu D, Gan S, Tibbits J F G, Moran G F, Bossinger G. β-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J, 2007, 51: 717-726.
pmid: 17605757
[1] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[2] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[7] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[8] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[9] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[10] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[11] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[12] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[13] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[14] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[15] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .