作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1658-1668.doi: 10.3724/SP.J.1006.2022.14115
荐红举1,2,3(), 张梅花1(), 尚丽娜1, 王季春1,2,3, 胡柏耿4, 吕典秋1,2,3,*()
JIAN Hong-Ju1,2,3(), ZHANG Mei-Hua1(), SHANG Li-Na1, WANG Ji-Chun1,2,3, HU Bai-Geng4, Vadim Khassanov5, LYU Dian-Qiu1,2,3,*()
摘要:
块茎是马铃薯的主要经济器官, 解析其形成和发育机制对于马铃薯高产育种具有重要意义。虽然结薯相关基因已有报道, 但仍有大量参与结薯的基因有待进一步挖掘和鉴定。随着测序技术的不断革新和发展, 转录组数据愈加丰富和繁杂, 利用加权共表达网络分析(weighted gene co-expression network analysis, WGCNA)筛选特定性状、组织或发育阶段相关基因的方法被广泛应用。本研究利用WGCNA分别对马铃薯DM 1-3 516 R44 (DM)材料以及RH89-039-16 (RH)材料各15个组织器官的转录组数据进行分析, 构建共表达网络, 筛选与块茎发育相关的共表达模块。对筛选表达模块中的基因进行GO (Gene Ontology)和KEGG (Kyoto Encyclopedia of Genes and Genomes)通路富集分析。以模块中连通度前10的基因为核心基因, 用PGSC数据库和NCBI数据库进行注释, 并利用qRT-PCR进行验证。通过WGCNA分析, 在DM和RH材料中均得到13个共表达模块, 其中DM材料的Cyan模块和RH材料的Black模块与块茎显著相关。分析表明, 2个模块的基因显著富集在激素代谢、淀粉和蔗糖代谢以及细胞形成等相关过程中。此外, 在Cyan中注释到已被证实与块茎发育相关的基因StGA2ox1, 并且在共表达分析中StGA2ox1与模块中10个核心基因均相互关联。核心基因的qRT-PCR结果与RNA-Seq的结果基本一致。本研究运用WGCNA方法鉴别了2个块茎发育相关的共表达模块, 筛选出多个与块茎发育相关的候选基因, 为马铃薯高产育种奠定基础。
[1] | Jackson S D. Multiple signaling pathways control tuber induction in potato. Plant Physiol, 1999, 119: 1-8. |
[2] |
Lafta A M, Lorenzen J H. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiol, 1995, 109: 637-643.
pmid: 12228617 |
[3] |
Kolachevskaya O O, Lomin S N, Arkhipov D V, Romanov G A. Auxins in potato: molecular aspects and emerging roles in tuber formation and stress resistance. Plant Cell Rep, 2019, 38: 681-698.
doi: 10.1007/s00299-019-02395-0 pmid: 30739137 |
[4] |
Lehretz G G, Sonnewald S, Hornyik C, Corral J M, Sonnewald U. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Curr Biol, 2019, 29: 1614-1624.
doi: S0960-9822(19)30425-7 pmid: 31056391 |
[5] |
Kondhare K R, Natarajan B, Banerjee A K. Molecular signals that govern tuber development in potato. Int J Dev Biol, 2020, 64: 133-140.
doi: 10.1387/ijdb.190132ab |
[6] |
Cheng L X, Wang Y P, Liu Y S, Zhang Q Q, Gao H H, Zhang F. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro. Physiol Plant, 2018, 163: 103-123.
doi: 10.1111/ppl.12670 |
[7] |
Evíková H, Maková P, Tarkowská D, Maek T, Lipavská H. Carbohydrates and gibberellins relationship in potato tuberization. J Plant Physiol, 2017, 214: 53-63.
doi: 10.1016/j.jplph.2017.04.003 |
[8] |
Martínez-García J F, García-Martínez J L, Bou J, Prat S. The interaction of gibberellins and photoperiod in the control of potato tuberization. J Plant Growth Regul, 2001, 20: 377-386.
doi: 10.1007/s003440010036 |
[9] |
Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Bachem C W B. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J, 2010, 52: 362-373.
doi: 10.1111/j.1365-313X.2007.03245.x |
[10] |
Jordi B T, Martínez-García J F, Luis G M J, Salomé P, Blazquez M A. Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS One, 2011, 6: e24458.
doi: 10.1371/journal.pone.0024458 |
[11] |
Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Bachem C W B. StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J, 2010, 52: 362-373.
doi: 10.1111/j.1365-313X.2007.03245.x |
[12] |
Jackson S D. Regulation of transcript levels of a potato gibberellin 20-oxidase gene by light and phytochrome B. Plant Physiol, 2000, 124: 423-430.
pmid: 10982455 |
[13] |
Xu X, Vreugdenhil D, Lammeren A A M V. Cell division and cell enlargement during potato tuber formation. J Exp Bot, 1998, 49: 573-582.
doi: 10.1093/jxb/49.320.573 |
[14] |
Fujino K, Koda Y, Kikuta Y. Reorientation of cortical microtubules in sup-apical region during tuberization in single-node stem segments of potato in culture. Plant Cell Physiol, 1995, 36: 891-895.
doi: 10.1093/oxfordjournals.pcp.a078835 |
[15] |
Taiz L. Plant cell expansion: egulation of cell well mechanical properties. Annu Rev Plant Physiol, 2003, 35: 585-657.
doi: 10.1146/annurev.pp.35.060184.003101 |
[16] |
Sanz M J, Mingo-Castel A, Lammeren A A M V, Vreugdenhil D. Changes in the microtubular cytoskeleton precede in vitro tuber formation in potato. Protoplasma, 1996, 191: 46-54.
doi: 10.1007/BF01280824 |
[17] | Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bachem C W B. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Plant Signal Behav, 2012, 63: 4539-4547. |
[18] |
Zhang B, Horvath S. A general framework for weighted geneco-expression network analysis. Plant Signal Behav, 2005, 4: 1128.
doi: 10.4161/psb.4.12.9942 |
[19] |
Downs G S, Bi Y M, Colasanti J, Wu W, Chen X, Zhu T, Rothstein S J, Lukens L N. A developmental transcriptional network for maize defines coexpression modules. Plant Physiol, 2013, 161: 1830-1843.
doi: 10.1104/pp.112.213231 |
[20] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[21] |
Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z. Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks1. Plant Physiol, 2014, 165: 1062-1075.
pmid: 24828307 |
[22] | Luo Y, Pang D, Jin M, Chen J, Wang Z. Identification of plant hormones and candidate hub genes regulating flag leaf senescence in wheat response to water deficit stress at the grain-filling stage. Plant Direct, 2019, 3: e00152. |
[23] | 林行众. 黄瓜共表达基因模块的识别及其特点分析.南京农业大学硕士学位论文, 江苏南京, 2015. |
Lin X Z. Identification and Characterization of Co-expression Modules in Cucumber (Cucumis sativus L.). MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China 2015. (in Chinese with English abstract) | |
[24] |
秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020, 46: 1033-1051.
doi: 10.3724/SP.J.1006.2020.94130 |
Qin T Y, Sun C, Bi Z Z, Liang W J, Li P C, Zhang J L, Bai J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agron Sin, 2020, 46: 1033-1051. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94130 |
|
[25] |
Ran Z, Zhu Y, Jiao Z, Fang Z, Ma D. Transcriptome-wide identification and characterization of potato circular rnas in response to pectobacterium carotovorum subspecies brasiliense infection. Int J Mol Sci, 2018, 19: 71.
doi: 10.3390/ijms19010071 |
[26] |
Leviatan N, Alkan N, Leshkowitz D, Robert F, Shin-Han S. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray. PLoS One, 2018, 8: e66511.
doi: 10.1371/journal.pone.0066511 |
[27] |
Staiger D, Brown J W S. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell, 2013, 25: 3640-3656.
doi: 10.1105/tpc.113.113803 |
[28] |
Quesada V, Macknight R, Dean C, Simpson G G. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J, 2003, 22: 3142-3152.
pmid: 12805228 |
[29] | 张玲. 生长素和细胞分裂素在马铃薯块茎发育中的作用. 中国农业信息, 2014, (11): 14. |
Zhang L. Roles of auxin and cytokinin in potato tuber development. China Agric Inf, 2014, (11): 14. (in Chinese) | |
[30] |
Raspor M, Motyka V, Ninković S, Dobrev P I, Malbeck J, Ćosić T, Cingel A, Savić J, Tadić V, Dragićević I Č. Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics. Sci Rep, 2020, 10: 3437.
doi: 10.1038/s41598-020-60412-9 |
[31] |
Xu X, Lammeren A A M V, Vermeer E, Vreugdenhil D. The role of gibberellin, abscisic acide, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol, 1998, 117: 575-584.
pmid: 9625710 |
[32] |
Escaclante B, Langille A R. Photoperiod, temperature, gibberellin, and anti-gibberellin affect tuberization of potato stem segments in vitro. HortScience, 1998, 33: 701-703.
doi: 10.21273/HORTSCI.33.4.701 |
[33] |
Lee J H, Terzaghi W, Gusmaroli G, Charron J B F, Yoon H J, Chen H, He Y J, Xiong Y, Deng X W. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell, 2008, 20: 152-167.
doi: 10.1105/tpc.107.055418 |
[34] |
Lee J H, Yoon H J, Terzaghi W, Martinez C, Dai M, Li J, Byun M O, Deng X W. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell, 2010, 22: 1716-1732.
doi: 10.1105/tpc.109.073783 |
[35] |
Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng X W. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell, 2008, 20: 1437-1455.
doi: 10.1105/tpc.108.058891 pmid: 18552200 |
[36] |
Chen H, Huang X, Gusmaroli G, Terzaghi W, Lau O S, Yanagawa Y, Zhang Y, Li J, Lee J H, Zhu D M, Deng X W. Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell, 2010, 22: 108-123.
doi: 10.1105/tpc.109.065490 |
[37] |
Kim Y O, Pan S, Jung C H, Kang H. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol, 2007, 48: 1170-1181.
doi: 10.1093/pcp/pcm087 |
[38] |
Kim W Y, Kim J Y, Jung H J, Oh S H, Han Y S, Kang H. Comparative analysis of Arabidopsis zinc finger-containing glycine-rich RNA-binding proteins during cold adaptation. Plant Physiol Biochem, 2010, 48: 866-872.
doi: 10.1016/j.plaphy.2010.08.013 |
[39] |
Zhe W, Zhu D, Lin X, Jin M, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X F, Tsuge T, Dean C, Aoyama T, Gu H, Qu L J. RNA binding proteins RZ-1B and RZ-1C Play critical roles in regulating pre-mRNA splicing and gene expression during development in Arabidopsis. Plant Cell, 2016, 28: 55-73.
doi: 10.1105/tpc.15.00949 |
[40] |
Yoshikawa M, Yang G, Kawaguchi K, Komatsu S. Expression analyses of β-tubulin isotype genes in rice. Plant Cell Physiol, 2003, 44: 1202-1207.
pmid: 14634157 |
[41] |
Spokevicius A V, Southerton S G, Macmillan C P, Qiu D, Gan S, Tibbits J F G, Moran G F, Bossinger G. β-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J, 2007, 51: 717-726.
pmid: 17605757 |
[1] | 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682. |
[2] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[3] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[4] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[5] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[6] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[7] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[8] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[9] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[10] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[11] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[12] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[13] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[14] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[15] | 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261. |
|