欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1669-1682.doi: 10.3724/SP.J.1006.2022.14111

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯储藏期花青素变化及合成相关基因表达分析

李洁雅1(), 李红艳1(), 叶广继1,2,3,4,5,*(), 苏旺1,2,3,4,5, 孙海宏1,2,3,4,5, 王舰1,2,3,4,5,*()   

  1. 1青海大学, 青海西宁 810016
    2青海省农林科学院, 青海西宁 810016
    3青海大学青藏高原生物技术教育部重点实验室, 青海西宁 810016
    4青海省马铃薯育种重点实验室, 青海西宁 810016
    5省部共建三江源生态与高原农牧业国家重点实验室, 青海西宁 810016
  • 收稿日期:2021-06-25 接受日期:2021-10-19 出版日期:2022-07-12 网络出版日期:2022-05-10
  • 通讯作者: 叶广继,王舰
  • 作者简介:李洁雅, E-mail: 17453345@qq.com
    李红艳, E-mail: 1286068155@qq.com第一联系人:

    ** 同等贡献

  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-9);专用型马铃薯产业高质量发展关键技术研发与示范基金项目(2019-NK-A1)

Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period

LI Jie-Ya1(), LI Hong-Yan1(), YE Guang-Ji1,2,3,4,5,*(), SU Wang1,2,3,4,5, SUN Hai-Hong1,2,3,4,5, WANG Jian1,2,3,4,5,*()   

  1. 1Qinghai University, Xining 810016, Qinghai, China
    2Qinghai Academy of Agriculture and Forestry, Xining 810016, Qinghai, China
    3Key Laboratory of Biotechnology, Ministry of Education Qinghai-Tibet Plateau, Qinghai University, Xining 810016, Qinghai, China
    4Key Laboratory of potato breeding Qinghai Province, Xining 810016, Qinghai, China
    5Ministry of State Key Laboratory of Sanjiangyuan Ecology and Plateau Agriculture and Animal Husbandry, Xining 810016, Qinghai, China
  • Received:2021-06-25 Accepted:2021-10-19 Published:2022-07-12 Published online:2022-05-10
  • Contact: YE Guang-Ji,WANG Jian
  • About author:First author contact:

    ** Contributed equally to this work

摘要:

目前植物花青素合成机理研究深入, 但花青素降解机制及组分变化研究鲜少。储藏过程对彩色马铃薯品质影响较大, 然而关于储藏期间马铃薯块茎中花青素含量及组分变化的规律及机制研究尚不完全清楚。本试验测定了不同储藏期间的2种彩色马铃薯的花青素含量、组分, 还原糖含量。同时, 利用qRT-RCR对花青素代谢相关基因(StPALStC4HSt4CLStF3HStDFRStUFGTStF35HStAN1StbHLH1)表达量进行分析。结果表明, 随着储藏时间延长, 花青素的总含量下降, 主要组分减少, 所有基因表达量均降低(黑金刚中StDFR例外), 变化规律与花青素的降解规律基本一致; 还原糖储藏期间缓慢升高可能影响花青素变化。本试验研究结果对彩色马铃薯储藏期间花青素含量的保持具有指导意义, 可为彩色马铃薯品种的选育及资源的合理利用提供理论参考。

关键词: 彩色马铃薯, 储藏期间, 基因表达, 花青素

Abstract:

Researches on the biosynthesis mechanism of anthocyanins have been widely done in plants, while little information is available on the mechanism of anthocyanins degradation and compositions in anthocyanins. The storage period affects the quality of potatoes. During storage period, the changes in anthocyanins content and composition of colored potato tubers remains unclear. In this study, the contents and components of anthocyanins and reducing sugar content were measured during storage period. Additionally, the relative expression of anthocyanins metabolism related genes (StPAL, StC4H, St4CL, StF3H, StDFR, StUFGT, StF35H, StAN1, and StbHLH1) were analyzed using qRT-RCR. The results showed that with the extension of storage period, the total contents and components of anthocyanins decreased. The relative expression levels of anthocyanins metabolism-related genes were down-regulated, but not StDFR in Heijingang. During storage period, the elevated reducing sugar might affect the anthocyanin content. Overall, these results indicated that a high level of anthocyanin during storage contributed to the high-quality colored potato, providing theoretical basis for breeding new colored potato varieties and manufacture products in future.

Key words: colored potato, storage period, gene relative expression, anthocyanins

图1

植物花青素生物合成途径[3]"

表1

花青素合成相关的qRT-PCR引物"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
StPAL GCAATGTGCAATGGACAGATTA GGCAAACATTTAGCAGATTGGA
StC4H GAGAGATCAACGAGGATAACGT CCACTCAATTGACCACAATGTT
St4CL TACTTGAAGCACGACGATGTGGTG GAACTACAGCAGCGACTGAGACAC
StANS ATTCCATCTGTTTTCAGTTCGC TACTCGTCACATTTCACTTCGA
StF3'5'H CCTATGGACCTCGTTGGAAGTTGC GCTCATTGGCACGAACATTGGC
StUFGT TGTGTTGCATCCTAGTTACGGA TCGAAGAGACAGGAGGCTCG
StDFR TGTCCATGCTACTGTTCGTGATCC GCTTCCTCCACTGCCAAGTCTG
StF3’H GGCTCGTTGTGGAATCTGACCTG TCTCACAGCTCGGATGCAATTC
StbHLH1 ACATCACAGGCAGCTGAAGTT GTTTGCTATCATCTGVACCCCA
StAN1 CACCCTTATCCGCCTACAAA TTCTTCTCGGCTCCACTTCA
X83206 GGATGCTTACGCTGGATGGAATGC TTCCGGTGTGGTTGGATTCTGTTC

图2

不同彩色马铃薯资源横切图"

图3

不同彩色马铃薯资源花青素含量"

图4

储藏期间2种彩色马铃薯块茎颜色变化"

图5

储藏期间两种彩色马铃薯的花青素含量变化"

表2

马铃薯花青素组分分析"

品种
Variety
时期
Phase
飞燕草色素
Delphinidin
矢车菊色素
Cyanidin
矮牵牛色素
Petunidin chloride
天竺葵色素
Pelargonidin
芍药素
Peonidin
锦葵色素
Malvidin
总计
Total
黑金刚
Heijingang
前期Prophase (7 d) 2.19 3.37 39.46 3.17 35.21 4.13 87.33
后期Later period (35 d) 1.31# 1.03# 18.98# 2.01# 12.51# 2.34# 30.98
红美人
Hongmeiren
前期Prophase (7 d) 5.91 73.75 7.65 87.31
后期Later period (35 d) 1.22# 6.12# 3.91# 10.57

图6

‘黑金刚’马铃薯不同储藏时间的高效液相色谱图 a: ‘黑金刚’马铃薯储藏前期样品; c: ‘黑金刚’马铃薯储藏后期样品; b和d: 6种花青素标准品。*, P<0.05。"

图7

‘红美人’马铃薯不同储藏时间的高效液相色谱图 a: ‘红美人’马铃薯储藏前期样品; c: ‘红美人’马铃薯储藏后期样品; b和d: 6种花青素标准品。*, P<0.05。"

表3

花青素的含量与花青素基因表达量的相关分析"

品种
Variety
相关系数
Correlation
coefficient
y x1 x2 x3 x4 x5 x6 x7 x8 x9
黑金刚
Heijingang
x1 0.99 1.00 0.67 0.96 -0.84 0.74 0.85 0.82 0.87 0.88
x2 0.71 0.67 1.00 0.72 -0.95 0.95 0.92 0.82 0.87 0.73
x3 0.95 0.96 0.72 1.00 -0.83 0.78 0.87 0.71 0.83 0.93
x4 -0.86 -0.84 -0.95 -0.83 1.00 -0.96 -0.97 -0.94 -0.97 -0.80
x5 0.72 0.74 0.95 0.78 -0.96 1.00 0.98 0.85 0.95 0.67
x6 0.83 0.85 0.92 0.87 -0.97 0.98 1.00 0.87 0.98 0.75
x7 0.81 0.82 0.82 0.71 -0.94 0.85 0.87 1.00 0.95 0.66
x8 0.84 0.87 0.87 0.83 -0.97 0.95 0.98 0.95 1.00 0.71
x9 0.94 0.88 0.73 0.93 -0.80 0.67 0.75 0.66 0.71 1.00
红美人
Hongmeiren
x1 0.86 1.00 0.61 0.89 0.90 0.15 0.94 0.22 0.86 0.95
x2 0.59 0.61 1.00 0.64 0.50 -0.09 0.82 0.87 0.86 0.67
x3 0.99 0.89 0.64 1.00 0.98 -0.11 0.86 0.21 0.88 0.98
x4 0.97 0.90 0.50 0.98 1.00 -0.08 0.81 0.04 0.81 0.97
x5 0.98 0.88 0.56 0.98 0.98 1.00 0.85 0.15 0.87 0.98
x6 0.86 0.94 0.82 0.86 0.81 0.21 1.00 0.53 0.98 0.93
x7 0.19 0.22 0.87 0.21 0.04 0.07 0.53 1.00 0.59 0.27
x8 0.89 0.86 0.86 0.88 0.81 0.16 0.98 0.59 1.00 0.93
x9 0.98 0.95 0.67 0.98 0.97 0.04 0.93 0.27 0.93 1.00

图8

储藏期间彩色马铃薯花青素相关基因表达量"

图9

储藏期间彩色马铃薯还原糖含量"

[1] 仇菊, 刘鹏, 孙君茂. 彩色马铃薯营养保健功能及其食品开发研究进展. 食品与机械, 2016, 32(10): 226-229.
Qiu J, Liu P, Sun J M. Research progress on the nutrition and health function of colored potato and its food development. Food Mach, 2016, 32(10): 226-229. (in Chinese with English abstract)
[2] Li X P, Sui Y, Li S Y, Xie B J, Sun Z D. A-type procyanidins from litchi pericarp ameliorate hyperglycaemia by regulating hepatic and muscle glucose metabolism in streptozotocin (STZ)-induced diabetic mice fed with high fat diet. J Funct Foods, 2016, 27: 711-722.
doi: 10.1016/j.jff.2016.08.010
[3] Liu Y, Tikunov Y, Schouten R E, Marcelis L F M, Visser R G F, Bovy A. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: a review. Front Chem, 2018, 6: 52.
doi: 10.3389/fchem.2018.00052
[4] Nizioł-Łukaszewska Z, Wasilewski T, Bujak T, Gawe-Bben K, Osika P, Czerwonka D. Cornus mas L. extract as a multifunctional material for manufacturing cosmetic emulsions. Chin J Nat Med, 2018, 16: 284-292.
[5] Chen K, Wei X T, Zhang J, Pariyani R, Jokioja J, Kortesniemi M, Linderborg K M, Heinonen J, Sainio T, Zhang Y M, Yang B. Effects of anthocyanin extracts from bilberry (Vaccinium myrtillus L.) and purple potato (Solanum tuberosum L. var. ‘Synkeä Sakari’) on the plasma metabolomic profile of zucker diabetic fatty rats. J Agric Food Chem, 2020, 68: 9436-9450.
doi: 10.1021/acs.jafc.0c04125
[6] Ju J H, Yoon H S, Park H J, Kim M Y, Shin H K, Park K Y, Yang J O, Sohn M S, Do M S. Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro. J Med Food, 2011, 14: 1097-1106.
doi: 10.1089/jmf.2010.1450
[7] Bonar N, Liney M, Zhang R X, Austin C, Dessoly J, Davidson D, Stephens J, McDougall G, Taylor M, Bryan G J, Hornyik C. Potato miR828 is associated with purple tuber skin and flesh color. Front Plant Sci, 2018, 9: 1742.
doi: 10.3389/fpls.2018.01742
[8] Jaromír L, Karel H, Matyáš O, Vladimír P, Kateřina H, Kateřina P, Petr D, Jaroslav Č. Impact of selected factors-cultivar, storage, cooking and baking on the content of anthocyanins in coloured-flesh potatoes. Food Chem, 2012, 133: 1107-1116.
doi: 10.1016/j.foodchem.2011.07.077
[9] 白粉娥, 成宇峰. 两种彩色马铃薯品种花色苷成分分析及其总抗氧化活性的比较研究. 保鲜与加工, 2018, 18(2): 108-113.
Bai F E, Cheng Y F. Comparative study of anthocyanins component and total antioxidant activity between two colorful potato cultivars. Storage Proc, 2018, 18(2): 108-113. (in Chinese with English abstract)
[10] 陈蒙, 刘海峰. 山葡萄C4H基因的克隆表达及遗传转化分析. 西南大学学报(自然科学版), 2019, 41(10): 11-21.
Chen M, Liu H F. Cloning expression and genetic transformation analysis of C4H gene of Vitis vinifera. J Southwest Univ (Nat Sci Edn), 2019, 41(10): 11-21. (in Chinese with English abstract)
[11] Colin G S, Matthew W R, Alfred Z, Dudley F, Bolwell G P. Tissue and subcellular immunolocalisation of enzymes of ligninsynthesis in differentiating and wounded hypocotyl tissue of French bean (Phaseolus vulgaris L.). Planta, 1994, 192: 155-164.
doi: 10.1007/BF01089030
[12] Blount J W, Korth K L, Masoud S A, Rasmussen S, Lamb C, Dixon R A. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants providese evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol, 2000, 122: 107-116.
pmid: 10631254
[13] 赵钰涵, 付春, 朱琳, 马俊杰, 周希萌, 李长生, 李爱芹, 厉广辉, 夏晗, 王兴军, 赵传志. 比较转录组分析揭示花生种皮花青素积累的分子调控机制. 山东农业科学, 2019, 51(9): 1-8.
Zhao Y H, Fu C, Zhu L, Ma J J, Zhou X M, Li C S, Li A Q, Li G H, Xia H, Wang X J, Zhao C Z. Comparative transcriptome analysis reveals the molecular regulation mechanism of peanut seed coat anthocyanin accumulation. Shandong Agric Sci, 2019, 51(9): 1-8. (in Chinese with English abstract)
[14] 王华, 李茂福, 杨媛, 金万梅. 果实花青素生物合成分子机制研究进展. 植物生理学报, 2015, 51: 29-43.
Wang H, Li M F, Yang Y, Jin W M. Research progress on molecular mechanism of fruit anthocyanin biosynthesis. Acta Phytophy, 2015, 51: 29-43. (in Chinese with English abstract)
[15] 金万梅, 王华. 植物表达载体pCAMBIA2301-del-ros的构建及其在草莓上的验证. 农业生物技术学报, 2014, 22: 389-396.
Jin W M, Wang H. Construction of plant expression vector pCAMBIA2301-del-ros and its verification on strawberry. J Agric Biotechnol, 2014, 22: 389-396 (in Chinese with English abstract).
[16] 徐青, 王代波, 刘国华, 李冰晶, 周元敬. 花青素稳定性影响因素及改善方法研究进展. 食品研究与开发, 2020, 41(7): 218-224.
Xu Q, Wang D B, Liu G H, Li B J, Zhou Y J. Advances in research on factors influencing the stability of anthocyanins and ways to improve them. Food Res Dev, 2020, 41(7): 218-224. (in Chinese with English abstract)
[17] 李冠臻. pH和温度对紫苏花青素稳定性的影响. 辽宁农业科学, 2018, 21(1): 84-85.
Li G Z. pH and temperature on the stability of acetyl anthocyanins. Liaoning Agric Sci, 2018, 21(1): 84-85. (in Chinese with English abstract)
[18] Araceli C O, Pacheco-Hernández M D L, Páez-Hernández M E, Rodríguez J A, Galán-Vidal C A. Chemical studies of anthocyanins: a review. Food Chem, 2008, 113: 859-871.
doi: 10.1016/j.foodchem.2008.09.001
[19] 李颖畅, 李冰心, 吕春茂, 孟宪军. 酰基化蓝莓花色苷的稳定性和对氧自由基清除能力. 食品工业科技, 2012, 33(6): 212-214.
Li Y C, Li B X, Lyu C M, Meng X J. The stability and scavenging ability of acylated blueberry anthocyanins to oxygen free radicals. Sci Technol Food Ind, 2012, 33(6): 212-214. (in Chinese with English abstract)
[20] 殷丽琴, 彭云强, 钟成, 付绍红, 杨进, 黄敏, 余勤, 韦献雅, 牛应泽. 高效液相色谱法测定8个彩色马铃薯品种中花青素种类和含量. 食品科学, 2015, 36(18): 143-147.
Yin L Q, Peng Y Q, Zhong C, Fu S H, Yang J, Huang M, Yu Q, Wei X Y, Niu Y Z. Determination of anthocyanin types and contents in 8 colored potato varieties by high performance liquid chromatography. Food Sci, 2015, 36(18): 143-147. (in Chinese with English abstract)
[21] 高建芳, 柯丽萍, 孙玉强. 基于花青素代谢培育蓝色花卉的研究进展. 生物工程学报, 2020, 36: 678-692.
Gao J F, Ke L P, Sun Y Q. Research progress on the cultivation of blue flowers based on anthocyanin metabolism. J Biol Engin, 2020, 36: 678-692. (in Chinese with English abstract)
[22] Brown C R, Wrolstad R, Durst R, Yang C P, Clevidence B. Breeding studies in potatoes containing high concentrations of anthocyanins. Am Potato Res, 2003, 80: 241-249.
[23] Albert N W, Lewis D H, Zhang H, Louis J I, Jameson P E, Davies K M. Light induced vegetative anthocyanin pigmentation in Petunia. J Exp Bot, 2009, 60: 2191-2202.
doi: 10.1093/jxb/erp097 pmid: 19380423
[24] 于振, 徐龙飞, 苏成付, 周庆萍, 王绪英, 朱毅. 不同品种紫色马铃薯花色苷含量及组分分析. 食品工业, 2016, 37(12): 269-272.
Yu Z, Xu L F, Su C F, Zhou Q P, Wang X Y, Zhu Y. Analysis of anthocyanin content and composition of different varieties of purple potato. Food Ind, 2016, 37(12): 269-272. (in Chinese with English abstract)
[25] 姜超. 彩色马铃薯优良新品系培育及花青素组分的HPLC-MS分析. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2017.
Jiang C. Cultivation of New Color Potato Lines and HPLC-MS Analysis of Anthocyanin Components. PhD Dissertation of Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China, 2017. (in Chinese with English abstract)
[26] Espley R V, Hellens R P, Putterill J, David E S, Sumathi K A, Andrew C A. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J, 2007, 49: 414-427.
doi: 10.1111/j.1365-313X.2006.02964.x
[27] 卢其能, 杨清. 马铃薯花色苷研究进展. 北方园艺, 2007, (9): 54-57.
Lu Q N, Yang Q. The research progress of potato anthocyanins. Northern Hortic, 2007, (9): 54-57 (in Chinese with English abstract).
[28] Brown C R. Antioxidants in potato. Am Potato Res, 2005, 82: 163-172.
[29] Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol, 2006, 140: 637-646.
pmid: 16384906
[30] Gregory A G, Mark A M, Tarana H S, Andrew J M, Simone D C. Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta, 2010, 232: 219-234.
doi: 10.1007/s00425-010-1165-2
[31] Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol, 2006, 140: 637-646.
pmid: 16384906
[32] 杨少华, 王丽, 穆春, 王翔, 何静辉, 赵静尧, 王林嵩. 蔗糖调节拟南芥花青素的生物合成. 中国生物化学与分子生物学报, 2011, 27: 364-369.
Yang S H, Wang L, Mu C, Wang X, He J H, Zhao J Y, Wang L S. Sucrose regulates Arabidopsis anthocyanin biosynthesis. Chin J Biochem Mol Biol, 2011, 27: 364-369. (in Chinese with English abstract)
[33] 袁立娜. 颠茄MYB1调控花色素苷生物合成的功能研究. 西南大学硕士学位论文,重庆, 2019. pp 33-42.
Yuan L N. Study on the Function of Belladonna MYB1 in Regulating Anthocyanin Biosynthesis. MS Thesis of Southwest University, Chongqing, China, 2019. pp 33-42. (in Chinese with English abstract)
[34] 杨玉霞, 孙菲菲, 张昌伟. 蝴蝶兰全长cDNA文库构建及F3′H基因克隆. 西北植物学报, 2013, 33: 1731-1738.
Yang Y X, Sun F F, Zhang C W. Construction of phalaenopsis full-length cDNA library and F3′H gene cloning. Acta Bot Northwest, 2013, 33: 1731-1738 (in Chinese with English abstract).
[35] 欧阳汝欣. 蓝色花的形成机制. 生物学通报, 2007, (3): 15.
Ou-Yang X R. The formation mechanism of blue flowers. Biol Bull, 2007, (3): 15. (in Chinese with English abstract)
[36] Brugliera F, Tao G Q, Tems U, Kalc G, Mouradova E, Price K, Stevenson K, Nakamura N, Stacey I, Katsumoto Y, Tanaka Y, Mason J G. Violet/Blue chrysanthemums-metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol, 2013, 54: 1696-1710.
doi: 10.1093/pcp/pct110 pmid: 23926066
[37] 李云萍, 郭晋雅, 高峰. 紫心甘薯花青素积累与PAL活性的关系. 西南大学学报(自然科学版), 2010, 32(2): 68-72.
Li Y P, Guo J Y, Gao F. The relationship between anthocyanin accumulation of purple heart sweet potato and PAL activity. J Southwest Univ (Nat Sci Edn), 2010, 32(2): 68-72. (in Chinese with English abstract)
[38] 徐靖, 林延慧, 王效宁, 韩义胜, 唐力琼, 王新华, 朱红林. 甘薯4-香豆酸辅酶A连接酶基因的生物信息学鉴定和表达分析. 西北植物学报, 2020, 40: 581-587.
Xu J, Lin Y H, Wang X N, Han Y S, Tang L Q, Wang X H, Zhu H L. Bioinformatics identification and expression analysis of sweet potato 4-coumarate coenzyme A ligase gene. Acta Bot Boreali-Occident Sin, 2020, 40: 581-587 (in Chinese with English abstract).
[39] 刘恺媛, 王茂良, 辛海波, 张华, 丛日晨, 黄大庄. 植物花青素合成与调控研究进展. 中国农学通报, 2021, 37(14): 41-51.
Liu K Y, Wang M L, Xin H B, Zhang H, Cong R C, Huang D Z. Research progress on the synthesis and regulation of plant anthocyanins. Chin Agric Sci Bull, 2021, 37(14): 41-51. (in Chinese with English abstract)
[40] 贾羊毛加, 王芳, 叶广继, 王舰. 紫色马铃薯花青素StAN1基因的克隆及功能分析. 西北植物学报, 2019, 39: 397-403.
Jia Y M J, Wang F, Ye G J, Wang J. Cloning and functional analysis of purple potato anthocyanin StAN1 gene. Acta Bot Boreali-Occident Sin, 2019, 39: 397-403. (in Chinese with English abstract)
[41] Gisbert C, Dumm J M, Prohens J, Vilanova C, Stommel R. A spontaneous eggplant (Solanum melongena L.) color mutant conditions anthocyanin free fruit pigmentation. HortScience, 2016, 51: 793-798.
doi: 10.21273/HORTSCI.51.7.793
[42] 刘芳, 杨元军, 陈广侠, 霍雨猛, 毕玉平. F3’5’H对马铃薯花青素合成的调控. 济南大学学报(自然科学版), 2018, 32(3): 192-198.
Liu F, Yang Y J, Chen G X, Huo Y M, Bi Y P. The regulation of F3’5’H on potato anthocyanin synthesis. J Jinan Univ (Nat Sci Edn), 2018, 32(3): 192-198. (in Chinese with English abstract)
[43] 戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种. 中国农业科学, 2016, 49: 529-542.
Dai S L, Hong Y. Molecular breeding of ornamental plant flower color improvement based on anthocyanin synthesis and coloringmechanism. Sci Agric Sin, 2016, 49: 529-542. (in Chinese with English abstract)
[1] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[2] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[7] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[8] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[9] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[10] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[11] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[12] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[13] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[14] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[15] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .