作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1601-1613.doi: 10.3724/SP.J.1006.2022.14130
李旭娟1(), 李纯佳1, 吴转娣1, 田春艳1, 胡鑫1, 丘立杭2, 吴建明2, 刘新龙1,*()
LI Xu-Juan1(), LI Chun-Jia1, WU Zhuan-Di1, TIAN Chun-Yan1, HU Xin1, QIU Li-Hang2, WU Jian-Ming2, LIU Xin-Long1,*()
摘要:
分蘖是无性繁殖经济作物-甘蔗最重要的农艺性状之一, 挖掘分蘖关键基因用于甘蔗理想株型调控是增加品种产量的重要途径。本研究使用实时荧光定量PCR技术对前期从甘蔗中获得的与水稻分蘖关键基因HTD2高度同源的ScHTD2基因开展表达特征分析, 然后探讨其在甘蔗种质资源群体中的基因多态性情况, 筛选与分蘖性状相关的变异位点。结果显示, 该基因表达具有组织特异性, 在叶中表达最高; 腋芽萌动发育过程中, 在休眠芽中表达量最高, 随着蔗芽萌动, 开始显著下调表达, 负调控蔗芽的萌动发育; 植物激动素、生长素和独脚金内酯都能显著诱导该基因在萌动蔗芽和蔗苗分蘖芽中的表达, 结合激素处理的表型变化特征, 预示生长素和独脚金内酯诱导该基因的高表达会抑制萌动蔗芽的继续发育和延迟蔗苗的分蘖, 但植物激动素诱导的高表达并没有这种抑制效应。对从26份甘蔗种质资源中获得的520条HTD2基因组DNA克隆序列开展基因多态性分析表明, 在基因组结构上, 该基因具有2个外显子和1个内含子, 其中内含子区域变异最为丰富。从群体基因多态性看, 原始种亲本群体在外显子1和2区域表现出较高的核苷酸多样性, 而主栽品种群体在内含子区域表现出较高的核苷酸多样性。从编码区单倍型多样性来看, 原始种亲本群体间单倍型多样性最为丰富, 其次为主栽品种群体。基因选择性测验中, 原始种亲本群体受正向选择, 选择压力较大, 基因进化速度快, 而骨干亲本群体和主栽品种群体受负向选择, 向纯化方向发展。编码区单倍型演化分析表明, Hap3和Hap4处于单倍型演化的辐射中心, 属于较为原始的类型。基因编码区变异位点与分蘖率相关性检测揭示该基因有23个SNP位点和5个InDel位点不同变异类型剂量与甘蔗种质资源分蘖率呈显著相关, 变异类型剂量效应将是未来甘蔗分子辅助育种重要的关注点。研究为进一步深入解析甘蔗分蘖调控关键基因的功能作用和开发功能性标记奠定了重要基础。
[1] | Pribil M, Hermann S R, Dun G D, Karno Ngo C, O’Neill S, Wang L, Bonnett G D, Chandler P M, Beveridge C A, Lakshmanan P. Altering sugarcane shoot architecture through genetic engineering:prospects for increasing cane and sugar yield. In: Proceedings of the 2007 Conference of the Australian Society of Sugar Cane Technologists. Cairns, Queensland, Australia: Australian Society of Sugar Cane Technologists, 2007. pp 251-257. |
[2] |
Vasantha S, Shekinah D E, Gupta C, Rakkiyappan P. Tiller production, regulation and senescence in sugarcane (Saccharum species hybrid) genotypes. Sugar Technol, 2012, 14: 156-160.
doi: 10.1007/s12355-011-0129-6 |
[3] |
Liu W Z, Chao W, Fu Y P, Hu G C, Si H M, Zhu L, Luan W J, He Z Q, Sun Z X. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 2009, 230: 649-658.
doi: 10.1007/s00425-009-0975-6 |
[4] |
Gao Z Y, Qian Q, Liu X H, Yan M X, Feng Q, Dong G J, Liu J, Han B. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol, 2009, 71: 265-276.
doi: 10.1007/s11103-009-9522-x |
[5] |
Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406-410.
doi: 10.1038/nature12878 |
[6] | 吕爱丽, 李旭娟, 刘洪博, 吴才文, 曾千春, 刘新龙. 甘蔗ScHTD2基因的克隆及生物信息学分析. 热带作物学报, 2016, 37: 1133-1140. |
Lyu A L, Li X J, Liu H B, Wu C W, Zeng Q C, Liu X L. Cloning and bioinformatics analysis of full-Length cDNA sequence of ScHTD2 gene from sugarcane. Chin J Trop Crops, 2016, 37: 1133-1140. (in Chinese with English abstract) | |
[7] | 陈迪文, 黄莹, 卢颖林, 江永, 李奇伟. 不同营养液配方对甘蔗组培幼苗生长的影响. 广东农业科学, 2013, 40(21): 28-31. |
Chen D W, Huang Y, Lu Y L, Jiang Y, Li Q W. Effect of different nutrient solutions on the growth of sugarcane tissue culture seedlings. Guangdong Agric Sci, 2013, 40(21): 28-31. (in Chinese with English abstract) | |
[8] |
Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014, 9: e97469.
doi: 10.1371/journal.pone.0097469 |
[9] |
McIntyre C L, Jackson M, Cordeiro G M, Amouyal O, Hermann S, Aitken K S, Eliott F, Henry R J, Casu R E, Bonnett G D. The identification and characterisation of alleles of sucrose phosphate synthase gene family III in sugarcane. Mol Breed, 2006, 18: 39-50.
doi: 10.1007/s11032-006-9012-7 |
[10] |
Zhang J, Arro J, Chen Y Q, Ming R. Haplotype analysis of sucrose synthase gene family in three Saccharum species. BMC Genomics, 2013, 14: 314.
doi: 10.1186/1471-2164-14-314 |
[11] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 |
[12] |
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25: 1451-1452.
doi: 10.1093/bioinformatics/btp187 pmid: 19346325 |
[13] |
Leigh J W, Bryant D. PopART: full-feature software for haplotype network construction. Methods Ecol Evol, 2015, 6: 1110-1116.
doi: 10.1111/2041-210X.12410 |
[14] |
张洪映, 毛新国, 景蕊莲, 谢惠民, 昌小平. 小麦TaPK7基因单核苷酸多态性与抗旱性的关系. 作物学报, 2008, 34: 1537-1543.
doi: 10.3724/SP.J.1006.2008.01537 |
Zhang H Y, Mao X G, Jing R L, Xie H M, Chang X P. Relationship between single nucleotide polymorphism of TaPK7 gene and drought tolerance in wheat. Acta Agron Sin, 2008, 34: 1537-1543. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01537 |
|
[15] | 俎鲁霞, 徐国恒. tRNA的结构、功能及合成简介. 生物学通报, 2008, 43(1): 19-20. |
Zu L X, Xu G H. Introduction to the structure, function and synthesis of tRNA. Bull Biol, 2008, 43(1): 19-20. | |
[16] |
Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009, 50: 1416-1424.
doi: 10.1093/pcp/pcp091 |
[17] |
Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim H I, Yoneyama K, Xie X N, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci USA, 2014, 111: 18084-18089.
doi: 10.1073/pnas.1410801111 |
[18] |
Hamiaux C, Drummond R S M, Janssen B J, Ledger S E, Cooney J M, Newcomb R D, Snowden K C. DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol, 2012, 22: 2032-2036.
doi: 10.1016/j.cub.2012.08.007 pmid: 22959345 |
[19] |
Germain A, Clavé G, Badet-Denisot M A, Pillot J P, Cornu D, Le Caer J P, Burger M, Pelissier Frank, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer F D. An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol, 2016, 12: 787-794.
doi: 10.1038/nchembio.2147 |
[20] | 田彦挺. 杨树独脚金内酯信号转导关键基因D14的克隆及功能研究. 山东农业大学硕士学位论文, 山东泰安, 2018. |
Tian Y T. Cloning and Functional Study of D14, a Key Gene for Signal Transduction of Poplar Strigolactone. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2018. (in Chinese with English abstract) | |
[21] | 李炎坤, 卓一南, 曾湘达, 何瑞. 青天葵独脚金内酯信号转导关键基因D14的克隆与亚细胞定位分析. 热带作物学报, 2019, 40: 504-513. |
Li Y K, Zhuo Y N, Zeng X D, He R.Cloning and expression analysis of D14, the key gene in the signal transduction of strigolactones from Nervilia fordii. Chin J Trop Crops, 2019, 40: 504-513. (in Chinese with English abstract) | |
[22] | 谢兆辉. 基因概念的演绎. 遗传, 2010, 32: 448-454. |
Xie Z H. The development of gene concepts. Hereditas, 2010, 32: 448-454. | |
[23] | 张志鹏, 王晓玥, 黄少雄, 张昭. 植物功能基因单核苷酸多态性的研究进展. 中国农学通报, 2016, 32(20): 25-29. |
Zhang Z P, Wang X Y, Huang S X, Zhang Z. Research progress of single nucleotide polymorphism in plant functional genes. Chin Agric Sci Bull, 2016, 32(20): 25-29. (in Chinese with English abstract) | |
[24] |
Zhang J S, Nagai C, Yu Q Y, Pan Y B, Ayala-Silva T, Schnell R J, ComstocK J C, Arumuganathan A K, Ming R. Genome size variation in three Saccharum species. Euphytica, 2012, 185: 511-519.
doi: 10.1007/s10681-012-0664-6 |
[25] |
Bundock P C, Eliott F G, Ablett G, Benson A D, Casu R E, Aitken K S, Henry R J. Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J, 2009, 7: 347-354.
doi: 10.1111/j.1467-7652.2009.00401.x pmid: 19386042 |
[26] |
McIntyre C L, Jackson M, Cordeiro G M, Amouyal O, Hermann S, Aitken K S, Eliott F, Henry R J, Casu R E, Bonnett G D. The identification and characterisation of alleles of sucrose phosphate synthase gene family III in sugarcane. Mol Breed, 2006, 18: 39-50.
doi: 10.1007/s11032-006-9012-7 |
[27] | 龚莺, 陈虹君, 许在恩, 郭小勤. 竹类植物Dwarf14 (D14)基因的多态性分析. 核农学报, 2018, 32: 48-57. |
Gong Y, Chen H J, Xu Z E, Guo X Q.Polymorphisms of Dwarf14 (D14) gene in Bambusoideae. J Nuclear Agric Sci, 2018, 32: 48-57. (in Chinese with English abstract) |
[1] | 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027. |
[2] | 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600. |
[3] | 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682. |
[4] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[5] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[6] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[7] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[8] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[9] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[10] | 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[13] | 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530. |
[14] | 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539. |
[15] | 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296. |
|