欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1614-1624.doi: 10.3724/SP.J.1006.2022.14119

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

黄麻内参基因筛选及次生细胞壁合成相关基因的表达分析

杨昕1,2(), 李玉1,2(), 刘传兵3, 张力岚1,2, 何青垚1,2, 祁建民1,2, 张立武1,2,*()   

  1. 1福建农林大学农学院 / 作物遗传育种与综合利用教育部重点实验室 / 福建省作物设计育种重点实验室, 福建福州 350002
    2福建农林大学农业农村部东南黄红麻实验观测站 / 福建省麻类种质资源共享平台 / 福建省南方经济作物遗传育种与多用途开发国际科技合作基地, 福建福州 350002
    3恩施土家族苗族自治州农业科学院, 湖北恩施 445000
  • 收稿日期:2021-07-10 接受日期:2021-10-19 出版日期:2022-07-12 网络出版日期:2021-11-15
  • 通讯作者: 张立武
  • 作者简介:杨昕, E-mail: 295548772@qq.com
    李玉, E-mail: 1349693117@qq.com第一联系人:

    ** 同等贡献

  • 基金资助:
    国家自然科学基金项目(31771369);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-16)

Reference genes screening for expression analysis of secondary cell wall synthesis related genes in jute (Corchorus capsularis)

YANG Xin1,2(), LI Yu1,2(), LIU Chuan-Bing3, ZHANG Li-Lan1,2, HE Qin-Yao1,2, QI Jian-Min1,2, ZHANG Li-Wu1,2,*()   

  1. 1Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Public Platform of Fujian for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3Academy of Agricultural Sciences, Enshi Tujia & Miao Autonous Prefecture of Hubei, Enshi 445000, Hubei, China
  • Received:2021-07-10 Accepted:2021-10-19 Published:2022-07-12 Published online:2021-11-15
  • Contact: ZHANG Li-Wu
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31771369);China Agriculture Research System of MOF and MARA(CARS-16)

摘要:

选择合适的内参基因进行校正和标准化, 既能提高实时定量荧光PCR的准确性, 也为分析黄麻次生细胞壁合成相关基因的表达模式奠定基础。本研究通过常用的内参基因, 结合课题组已有的基因组数据和转录组数据, 初步筛选出8个内参基因(CcTUBαCcACTCcDnaJCcTUBβCcUBQCcEF1αCcUBCCcUBI)。为验证这些候选内参基因的稳定性, 以优良品种‘黄麻179’为材料, 对种子萌发后14 d的根、茎、叶进行qRT-PCR分析。经Ct值的变异系数、软件geNorm和NormFinder的综合分析, 确定表达最稳定内参基因为CcDnaJ, 最佳内参基因组合方式为CcDnaJ+CcUBQ+CcUBI。通过种子萌发后10 d下胚轴、60 d和90 d茎皮的转录组数据分析次生细胞壁合成相关基因的表达模式, 发现木质素合成基因Cc4CL1CcCCoAOMT1的表达量在种子萌发后60 d茎皮最高, 而种子萌发后90 d茎皮表现为下降; 纤维素合成酶基因CcCesA4CcCesA7CcesA8和木聚糖合成基因CcIRX8CcIRX9、CcFRA8的表达量在种子萌发后10 d下胚轴最高, 而种子萌发后60 d、90 d茎皮的表达量均有下降, 表明这些基因参与了黄麻纤维发育。以CcDnaJ+CcUBQ+CcUBI作为内参基因组合, qRT-PCR分析5个次生细胞壁合成相关基因, 即Cc4CL1CcCCoAOMT1CcCesA4CcCesA7CcesA8, 在种子萌发后7 d下胚轴和14 d茎的表达模式, 发现这5个基因在种子萌发期后14 d茎的表达量均高于种子萌发期后7 d下胚轴, 暗示着黄麻纤维的形成开始于7~14 d之间, 同时表明CcDnaJ+CcUBQ+CcUBI的内参基因组合具有实用性。

关键词: 黄麻, qRT-PCR, 内参基因, 次生细胞壁, 纤维素, 木质素

Abstract:

Selecting suitable reference genes for calibration and standardization can not only improve the accuracy of real-time quantitative PCR (qRT-PCR), but also lay the foundation for analyzing the expression pattern of genes related to secondary cell wall synthesis in jute. In the present work, 8 candidate reference genes were screened on the homologs of common reference genes by using available genomic and transcriptomic data of the research group. To evaluate the stability of candidate genes, we used different tissues (roots, stems and leaves) of ‘Huangma 179’ at the 14 days after germination (DAG) as materials for qRT-PCR. Then qRT-PCR data were analyzed by coefficient of variation (CV) of Ct value, the softwares of geNorm and NormFinder, respectively. The results showed that the most stablest reference gene was CcDnaJ, and the best combination of reference genes was ‘CcDnaJ + CcUBQ + CcUBI’. The expression patterns of secondary wall synthesis related genes were analyzed by transcriptomic data of hypocotyls at the 10 DAG, stem barks at the 60 DAG and 90 DAG. The electronic expression of lignin synthase genes, Cc4CL1 and CcCCoAOMT1, in stem barks at the 60 DAG were the highest, and then decreased at the 90 DAG. The expression of cellulose synthase genes, CcCesA4, CcCesA7, CcesA8, and xylan biosynthesis genes, CcIRX8, CcIRX9, CcFRA, in hypocotyls at the 10 DAG were the highest, and decreased in stem barks at the 60 DAG and 90 DAG. These findings indicate that these genes were involved in jute fiber development. Furthermore, the expression patterns of 5 secondary wall synthesis related genes, Cc4CL1, CcCCoAOMT1, CcCesA4, CcCesA7, and CcesA8, were analyzed by qRT-PCR using the reference gene combination of ‘CcDnaJ + CcUBQ + CcUBI’ at different stem developmental stages, i.e. hypocotyls at the 7 DAG and stems at the 14 DAG. The results revealed that relative expression of Cc4CL1, CcCesA4, CcCesA7, and CcesA8 genes in stems at the 14 DAG were higher than that in hypocotyles at the 7 DAG, suggesting that jute fiber formation starts at between 10 and 14 DAG, and the reference gene combination of ‘CcDnaJ + CcUBQ + CcUBI’ was available as well.

Key words: Corchorus L., qRT-PCR, reference gene, secondary cell wall, cellulose, lignin

表1

黄麻候选内参基因信息"

基因简称
Gene
abbreviation
基因名称
Gene name
拟南芥
Arabidopsis thaliana (AT)
黄麻数据库编号
Database number of C. capsularis (Cc)
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
CcACT Actin AT5G09810.1 Cc.02G0001300 CcACT-F
CcACT-R
GGAGCTGAGAGATTCCGTTG
CTTGCTCATACGGTCTGCAA
CcDanJ Chaperone protein AT3G07590.1 Cc.04G0010010 CcDanJ-F
CcDanJ-R
TCCTGCCTGACAGCATAAATCTTG
TTAACGGCCTCTACCACGTCCACG
CcEF1α Elongation factor 1-α AT1G07940.1 Cc.v30140180 CcEF1α-F
CcEF1α-R
GTTTGAGACCACCAAATACTACTGCA
TCAATAATGAGGACAGCACAATCAGC
CcTUBα α-Tubulin AT1G04820.1 Cc.05G0004250 CcTUBα-F
CcTUBα-R
AATCAACTATCAGCCACCCACAGT
CCTTCCTCCATTCCTTCACCTACG
CcTUBβ β-Tubulin AT2G29550.1 Cc.v30016860 CcTUBβ-F
CcTUBβ-R
GAATGTATGGTGTTGGACAATGAGGC
AAAAAGTGTAACCGTGGGAAGGGGAT
CcUBC Ubiquitin-conjugating enzyme AT3G52560.4 Cc.04G0035920 CcUBC-F
CcUBC-R
TGGTCCTCCTAATACTGTCCACGAA
ATCCTCCATTGTATACTCCCTTTGC
CcUBI Ubiquitin AT2G47110.1 Cc.04G0041210 CcUBI-F
CcUBI-R
AGGAACGTGAAGCCATAGAACG
ATCTAAAAGGTAGTTTGCCGCC
CcUBQ Polyubiquitin AT5G20620.1 Cc.04G0014390 CcUBQ-F
CcUBQ-R
GCATCTCCACCATGCTCCTTAA
GTGCCTCTCGAACCATTTCCTC

表2

黄麻次生细胞壁合成基因引物序列及扩增片段大小"

基因简称
Gene abbreviation
上游引物和下游引物
Forward and reverse sequences (5°-3°)
扩增片段大小
Amplified fragments (bp)
Cc4CL1 F: TGGGACGACGGGTCAGATTTAT
R: CGTTGGAAGCTTTGGCTTGCTT
236
CcCCoAOMT1 F: GGAGCCTGAGGCCATGAAAGAG
R: CAAGGGCAGTAGCAAGGAGAGA
176
CcCesA4 F: ACAAGGATGACTCAGATCATCGCC
R: TTTCTTGCCTGACTTTCCATTTCT
186
CcCesA7 F: ACAATCGCAATGAACTCGTCGT
R: GATCTCCATCCACTGTCAGCCC
120
CcCesA8 F: GCAAGCACTTTATGGCTATGGACCT
R: TCTCAATCTCTCTCAGGTTGAAAATT
176

表3

黄麻候选内参基因在不同发育时期不同组织的电子表达量分析"

基因简称
Gene abbreviation
电子表达量平均数
Mean of electronic expression
标准差
Standard deviation
变异系数
Coefficient of variation (%)
CcACT 10.477 0.689 6.6
CcDnaJ 8.151 0.509 6.2
CcEF1α 11.820 0.491 4.2
CcTUBα 9.041 0.838 9.3
CcTUBβ 9.064 0.555 6.1
CcUBC 8.500 0.318 3.7
CcUBI 8.982 0.249 2.8
CcUBQ 7.485 0.366 4.9

图1

‘黄麻179’萌发后14 d 不同组织的RNA质量检测电泳图 M: DL2000 DNA marker; 1: 根; 2: 茎; 3: 叶。"

图2

用于荧光定量PCR的引物特异性分析电泳图"

表4

黄麻8个内参基因引物的扩增特征"

基因简称
Gene abbreviation
扩增效率
Efficiency (%)
相关系数
Correlation coefficient
扩增片段大小
Amplified fragments (bp)
CcACT 84.5 0.9984 195
CcDnaJ 96.4 0.9946 140
CcEF1α 86.3 0.9939 114
CcTUBα 80.2 0.9960 186
CcTUBβ 90.0 0.9936 206
CcUBC 87.1 0.9911 199
CcUBI 105.6 0.9904 116
CcUBQ 95.6 0.9967 126

图3

黄麻8个内参基因的溶解曲线图"

表5

黄麻内参基因的Ct值稳定性分析"

基因简称
Gene abbreviation
平均数
Means of Ct value
标准差
Standard deviation
变异系数
Coefficient of variation (%)
CcACT 28.385 4.052 14.3
CcDnaJ 30.698 2.957 9.6
CcEF1α 27.668 4.525 16.4
CcTUBα 30.107 4.768 15.8
CcTUBβ 30.378 4.385 14.4
CcUBC 29.752 2.174 7.3
CcUBI 30.000 3.164 10.5
CcUBQ 30.995 3.348 10.8

图4

geNorm软件评估候选内参基因平均表达稳定指数(M)及配对差异值(V)"

表6

基于NormFinder软件候选内参基因稳定排名"

基因简称
Gene abbreviation
稳定值
Stability value
排名
Rank
CcDnaJ 0.273 1
CcUBQ 0.712 2
CcUBI 0.786 3
CcTUBβ 0.934 4
CcUBC 1.108 5
CcEF1α 1.142 6
CcTUBα 1.335 7
CcACT 1.439 8

表7

SMART和NCBI (CDD)鉴定黄麻次生细胞壁合成基因及其结构域"

基因简称
Gene
abbreviation
黄麻数据库编号
Database number of C. capsularis
结构域
Domain
SMART CDD (protein)
起始
Start
终止
End
E
E-value
区间
Interval
E
E-value
Cc4CL1 Cc.06G0029430 AMP-binding 34 446 2.2e-115 6 542
AMP-binding_C 454 529 3.4e-18
CcCCoAMOT1 Cc.02G0006600 Methyltransf_24 84 191 2.3e-11 1 247
CcCesA4 Cc.07G0013090 Cellulose_synthase 318 1058 49 1062
Cellulose_synthase 1097 1837
CcCesA7 Cc.07G0011040 Cellulose_synthase 335 1040 1 1044
CcCesA8 Cc.06G0026520 Cellulose_synthase 256 972 1 978
CcFRA8 Cc.07G0001000 Exostosin 95 397 4.5e-71 97 395 1.09e-75
CcIRX8 Cc.01G0038940 Glycosyl transferases _8 173 516 1.2e-76 1 543
CcIRX9 Cc.05G0004240 Glycosyl transferase _43 135 254 2.8e-37 1 288 5.39e-159

图5

黄麻次生细胞壁合成相关基因的表达分析 Hypocotyl-10 d: 种子萌发后10 d的下胚轴; Stem-60 d: 种子萌发后60 d的茎皮; Stem-90 d: 种子萌发后90 d的茎皮。柱上不同小写字母表示同一基因在不同时期表达量差异达到显著水平。"

图6

黄麻5个次生细胞壁合成相关基因在不同时期茎的的相对表达量分析 Hypocotyl-7 d: 种子萌发后7 d的下胚轴; Stem-14 d: 种子萌发后14 d的茎。柱上不同小写字母表示同一基因在不同时期茎皮中表达量差异达到显著水平。"

[1] De Boer M E, De Boer T E, Mariën J, Timmermans M J T N, Nota B, van Straalen N M, Ellers J, Roelofs D. Reference genes for QRT-PCR tested under various stress conditions in Folsomia candida and Orchesella cincta (Insecta, Collembola). BMC Mol Biol, 2009, 10: 54.
doi: 10.1186/1471-2199-10-54
[2] Tom M, James H, Javier G, Karl Y, Arrin K, Douglas R, Jamie C, Tanya K, Sergey E I, Daniel H, James M D, Colin J H B. Nanoliter high throughput quantitative PCR. Nucleic Acids Res, 2006, 34: e123.
doi: 10.1093/nar/gkl639
[3] Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun, 2005, 6: 279-284.
pmid: 15815687
[4] Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T. The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 2009, 55: 611-622.
doi: 10.1373/clinchem.2008.112797
[5] Vanguilder H D, Vrana K E, Freeman W M. Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques, 2008, 44: 619-626.
doi: 10.2144/000112776
[6] Logan J, Edwards K, Saunders N. Real-time PCR:current Technology and Applications. London: Caister Academic Press , 2009. pp 47-64.
[7] Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002, 3: 467-470.
[8] 朱斌, 陆俊杏, 彭茜, 翁昌梅, 王淑文, 余浩, 李加纳, 卢坤, 梁颖. 甘蓝型油菜MAPK7基因家族及其启动子的克隆与表达分析. 作物学报, 2013, 39: 789-805.
Zhu B, Lu J X, Peng Q, Weng C M, Wang S W, Yu H, Li J N, Lu K, Liang Y.Cloning and analysis of MAPK7 gene family and their promoters from Brassica napus. Acta Agron Sin, 2013, 39: 789-805. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00789
[9] Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre J-F, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J, 2008, 6: 609-618.
doi: 10.1111/j.1467-7652.2008.00346.x pmid: 18433420
[10] 陈宇.油菜在多种逆境条件下qRT-PCR内参基因的稳定性评估及抗逆相关基因的表达分析. 江苏大学博士学位论文, 江苏镇江 2014.
Chen Y.Stability Evaluation of Reference Genes for qRT-PCR Normalization and Expression Analysis of Resistance Related Genes in Brassica napus under Various Stress Conditions. PhD Dissertation of Jiangsu University, Zhenjiang, Jiangsu, China, 2014. (in Chinese with English abstract)
[11] 刘圆, 王丽鸳, 韦康, 成浩, 张芬, 吴立赟, 胡娟. 不同氮处理茶树实时定量PCR内参基因筛选和验证. 茶叶科学, 2016, 36(1): 92-101.
Liu Y, Wang L Y, Wei K, Cheng H, Zhang F, Wu L Y, Hu J. Screening and validation of reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis) under different nitrogen nutrition. J Tea Sci, 2016, 36(1): 92-101. (in Chinese with English abstract)
[12] Condori J, Nopo-Olazabal C, Medrano G, Medina-Bolivar F. Selection of reference genes for qPCR in hairy root cultures of peanut. BMC Res Notes, 2011, 4: 392.
doi: 10.1186/1756-0500-4-392 pmid: 21985172
[13] 马雄风, 喻春明, 唐守伟, 朱爱国, 王延周, 朱四元, 刘建新, 熊和平. 苎麻Actin1基因克隆及其在韧皮部纤维不同发育阶段的表达. 作物学报, 2010, 36: 101-108.
Ma X F, Yu C M, Tang S W, Zhu A G, Wang Y Z, Zhu S Y, Liu J X, Xiong H P. Cloning and tissue expression of Actin1 gene in different fiber development phases of ramie [Boehmeria nivea (Linn.) Gaud]. Acta Agron Sin, 2010, 36: 101-108. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00101
[14] Nicot N, Hausman J F, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot, 2005, 56: 2907-2914.
doi: 10.1093/jxb/eri285
[15] 沈江锋, 李俊敏, 孙丽英, 陈剑平. 水稻黑条矮缩病毒和水稻条纹叶枯病毒侵染下水稻qRT-PCR内参基因的筛选. 植物病理学报, 2014, 44: 276-286.
Shen J F, Li J M, Sun L Y, Chen J P. Reference gene selection for real- time fluorescence quantitative PCR analysis in rice plants infected by Rice black-streaked dwarf virus or Rice stripe virus. Acta Phytopathol Sin, 2014, 44: 276-286 (in Chinese with English abstract).
[16] 唐枝娟, 刘秦, 肖晓蓉, 牛晓磊. 白叶枯病菌侵染下的水稻内参基因稳定性. 分子植物育种, 2017, 15: 300-306.
Tang Z J, Liu Q, Xiao X R, Niu X L. Selection of optimized candidate reference genes for qRT-PCR normalization in rice during Xanthomonas oryzae Pv. oryzae infection. Mol Plant Breed, 2017, 15: 300-306. (in Chinese with English abstract)
[17] 阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物学报, 2009, 30: 274-278.
Que Y X, Xu L P, Xu J S, Zhang J S, Zhang M Q, Chen R K. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane. Chin J Trop Crops, 2009, 30: 274-278. (in Chinese with English abstract)
[18] 胡瑞波, 范成明, 傅永福. 植物实时荧光定量PCR内参基因的选择. 中国农业科技导报, 2009, 11(6): 30-36.
Hu R B, Fan C M, Fu Y F. Reference gene selection in plant real-time quantitative reverse transcription PCR (qRT-PCR). J Agric Sci Technol, 2009, 11(6): 30-36. (in Chinese with English abstract)
[19] Jahan M S, Hossain S, Khan M A. Economic importance of jute. In: Zhang L W, Khan H, Kole C, eds.The Jute Genome. The Jute Genome.Cham: Springer 2022. pp 1-13.
[20] Zhang L W, Ibrahim A K, Niyitanga S, Zhang L M, Qi J M.Jute (Corchorus spp.) breeding In: Al-Khayri J, Jain S, Johnson D, eds. Advances in Plant Breeding Strategies: Industrial and Food Crops. Cham: Springer., 2019. pp 85-113.
[21] 中华人民共和国农业行业标准(NT/T3738-2020). 植物品种特异性(可区别性)、一致性和稳定性指南--黄麻. 北京: 中国农业出版社, 2020. pp 1-14.
National Standards of People’s Republic of China-Ministry of Agricultural Notice (NT/T3738-2020). Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability-Jute(Corchorus capsularis, C. olitorius). Beijing: China Agriculture Press, 2020. pp 1-14. (in Chinese)
[22] 张燕梅, 王瑞芳, 杨子平, 鹿志伟, 李俊峰, 赵艳龙, 陆军迎, 周文钊. 剑麻内参基因筛选与稳定表达分析. 热带作物学报, 2019, 40: 2166-2173.
Zhang Y M, Wang R F, Yang Z P, Lu Z W, Li J F, Zhao Y L, Lu J Y, Zhou W Z. Screening of suitable reference genes for qRT-PCR normalization in Sisal. Chin J Trop Crops, 2019, 40: 2166-2173. (in Chinese with English abstract)
[23] 牛小平. 红麻苗期应答盐和干旱胁迫的HcWRKY17HcWRKY26功能分析. 福建农林大学博士学位论文, 福建福州, 2016.
Niu X P. Function Analysis of HcWRKY17 and HcWRKY26 Response to Salinity and Kenaf (Hibiscus cannabinus). PhD Dissertation of Fujian Agricultural and Forestry University, Fuzhou, Fujian, China, 2016. (in Chinese with English abstract)
[24] 宋东亮, 沈君辉, 李来庚. 高等植物细胞壁中纤维素的合成. 植物生理学通讯, 2008, 44: 791-796.
Song D L, Shen J H, Li L G. Cellulose synthesis in the cell walls of higher plants. Plant Physiol J, 2008, 44: 791-796. (in Chinese with English abstract)
[25] Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol, 2010, 153: 895-905.
doi: 10.1104/pp.110.155119 pmid: 20472751
[26] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol, 2003, 54: 519-46.
pmid: 14503002
[27] Zhang G, Zhang Y, Xu J, Niu X, Qi J, Tao A, Zhang L, Fang P, Lin L, Su J.The CCoAOMT1 gene from jute (Corchorus capsularis L.) is involved in lignin biosynthesis in Arabidopsis thaliana. Gene, 2014, 546: 398-402.
doi: 10.1016/j.gene.2014.05.011
[28] Lee D, Ellard M, Wanner L A, Davis K R, Douglas C J. TheArabidopsis thaliana4-coumarate:CoA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Mol Biol, 1995, 28: 871-884.
pmid: 7640359
[29] 李雄彪, 张金忠. 半纤维素的化学结构和生理功能. 植物学通报, 1994, (1): 27-33.
Li X B, Zhang J Z. Chemical structure and physiological function of hemicellulose. Chin Bull Bot, 1994, (1): 27-33. (in Chinese)
[30] Sado P E, Tessier D, Vasseur M, Elmorjani K, Guillon F, Saulnier L. Integrating genes and phenotype: a wheat-Arabidopsis-rice glycosyltransferase database for candidate gene analyses. Funct Integr Genomics, 2009, 9: 43-58.
[31] Desprez T, Juraniec M, Crowell E F, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S.Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2007, 104: 15572-15577.
doi: 10.1073/pnas.0706569104
[32] Zhang L L, Ma X K, Zhang X T, Xu Y, Ibrahim A K, Yao J Y, Huang H X, Chen S, Liao Z Y, Zhang Q, Niyitanga S, Yu J X, Liu Y, Xu X M, Wang J J, Tao A F, Xu J T, Chen S Y, Yang X, He Q Y, Lin L H, Fang P P, Zhang L M, Ming R, Qi J M, Zhang L W. Reference genomes of the two cultivated jute species. Plant Biotechnol J, 2021, 19: 2235-2248.
doi: 10.1111/pbi.13652
[33] Samanta P, Sadhukhan S, Basu A. Identification of differentially expressed transcripts associated with bast fibre development in Corchorus capsularis by suppression subtractive hybridization. Planta, 2015, 241: 371-385.
doi: 10.1007/s00425-014-2187-y
[34] 李铁铮, 王金铃, 刘晓, 王晓晖. 管花肉苁蓉实时荧光定量PCR分析中内参基因的选择和验证. 植物生理学报, 2021, 57: 969-981.
Li T Z, Wang J L, Liu X, Wang X H. Selection and validation of appropriate reference genes for qRT-PCR analysis in Cistanche tubulosa. Plant Physiol J, 2021, 57: 969-981. (in Chinese with English abstract)
[35] Li W, Qian Y Q, Han L, Liu J X, Li Z J, Ju G S, Sun Z Y. Validation of candidate reference genes for gene expression normalization in Buchloe dactyloides using quantitative real-time RT-PCR. Sci Hortic, 2015, 197: 99-106.
doi: 10.1016/j.scienta.2015.09.003
[36] 尹静, 任春林, 詹亚光, 滕文华, 陈秀福, 王玉成, 孙红冉. 可用于实时荧光定量PCR标准化的白桦内参基因. 植物生理学通讯 , 2010, 46: 1061-1066.
Yin J, Ren C L, Zhan Y G, Teng W H, Chen X F, Wang Y C, Sun H R. Selection of internal control genes for real-time RT-PCR normalization in white birch (Betula platyphylla Suk.). Plant Physiol Commun, 2010, 46: 1061-1066. (in Chinese with English abstract)
[37] 杨坤, 黄超, 卢山, 彭国颖, 黄长干. 铜胁迫下紫鸭跖草根组织实时定量PCR内参基因的选择. 植物生理学报, 2021, 57: 195-204.
Yang K, Huang C, Lu S, Peng G Y, Huang C G. Reference gene selection for quantitative real-time PCR in purple setcreasea (Setcreasea purpurea) root tissue under copper stress. Plant Physiol J, 2021, 57: 195-204. (in Chinese with English abstract)
[38] Lepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, Mccarthy J. Chlorogenic acid synthesis in coffee: an analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora. Plant Sci, 2007, 172: 978-996.
doi: 10.1016/j.plantsci.2007.02.004
[39] 梁海泳, 夏秀英, 高晓蓉, 苏乔. 反义4CL与UGPase双价基因在烟草中的转化及表达分析. 植物学通报, 2007, 24: 459-464.
Liang H Y, Xia X Y, Gao X R, Su Q. Vector construction with UGPase and anti4CL, and their expression in transgenic tobacco. Chin Bull Bot, 2007, 24: 459-464 (in Chinese with English abstract).
[40] 张高阳, 祁建民, 徐建堂, 牛小平, 张雨佳, 张立武, 陶爱芬, 方平平, 林荔辉. 圆果黄麻纤维素合成酶基因CcCesA1的克隆及利用反义载体转化拟南芥. 作物学报, 2014, 40: 816-822.
Zhang G Y, Qi J M, Xu J T, Zhang Y J, Zhang L W, Tao A F, Fang P P, Lin L H. Cloning cellulose synthetase gene CcCesA1from jute (Corchorus capsularis L.) and transformation of Arabidopsis via antisense vector. Acta Agron Sin, 2014, 40: 816-822. (in Chinese with English abstract)
[41] Abbas M, Peszlen I, Shi R, Kim H, Katahira R, Kafle K, Xiang Z, Huang X, Min D, Mohamadamin M, Yang C, Dai X, Yan X, Park S, Li Y, Kim S H, Davis M, Ralph J, Sederoff R R, Chiang V L, Li Q. Involvement of CesA4, CesA7-A/B and CesA8-A/B in secondary wall formation in Populus trichocarpa wood. Tree Physioll, 2020, 40: 73-89.
[42] Lee C, O’neill M A, Tsumuraya Y, Darvill A G, Ye Z H. The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol, 2007, 48: 1624-1634.
doi: 10.1093/pcp/pcm135
[43] Samanta P, Sadhukhan S, Basu A. Identification of differentially expressed transcripts associated with bast fiber development in Corchorus capsularis by suppression subtractive hybridization. Planta, 2015, 241: 371-385.
doi: 10.1007/s00425-014-2187-y
[1] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[2] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[3] 郭艳春, 姚嘉瑜, 张镕斌, 陈思远, 何青垚, 陶爱芬, 方平平, 祁建民, 张列梅, 张立武. 中国黄麻炭疽病病原菌的分离鉴定及系统发育分析[J]. 作物学报, 2022, 48(3): 770-777.
[4] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[5] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[6] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[7] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[8] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[9] 陶爱芬,游梓翊,徐建堂,林荔辉,张立武,祁建民,方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证[J]. 作物学报, 2020, 46(7): 987-996.
[10] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[11] 王凯,赵小红,姚晓华,姚有华,白羿雄,吴昆仑. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627.
[12] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
[13] 姚嘉瑜,张立武,赵捷,徐益,祁建民,张列梅. 黄麻全基因组SSR鉴定与特征分析[J]. 作物学报, 2019, 45(1): 10-17.
[14] 徐益,张列梅,祁建民,苏梅,方书生,张力岚,方平平,张立武. 黄麻纤维产量与主要农艺性状的相关分析[J]. 作物学报, 2018, 44(6): 859-866.
[15] 尹能文**,李加纳**,刘雪,练剑平,付春,李威,蒋佳怡,薛雨飞,王君,柴友荣*. 高温干旱下油菜的木质化应答及其在茎与根中的差异[J]. 作物学报, 2017, 43(11): 1689-1695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .