作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1031-1042.doi: 10.3724/SP.J.1006.2021.04104
• 专题:主要麻类作物基因组学与遗传改良 • 上一篇 下一篇
李增强1(), 丁鑫超1, 卢海1, 胡亚丽1, 岳娇1, 黄震1, 莫良玉1, 陈立1, 陈涛2, 陈鹏1,*()
LI Zeng-Qiang1(), DING Xin-Chao1, LU Hai1, HU Ya-Li1, YUE Jiao1, HUANG Zhen1, MO Liang-Yu1, CHEN Li1, CHEN Tao2, CHEN Peng1,*()
摘要:
DNA甲基化在植物响应生物和非生物胁迫中起重要作用, 但是有关铅胁迫下植物DNA甲基化水平变化的研究报道甚少。本研究以红麻P3A为材料, 采用水培法对幼苗进行不同浓度(0、200、400、600 μmol L -1) PbCl2处理, 测定幼苗农艺性状、根系ROS含量和抗氧化酶活性等变化情况; 利用甲基化敏感扩增多态性技术(methylation-sensitive amplification polymorphism, MSAP)分析600 μmol L -1铅胁迫条件下根系DNA甲基化水平变化, 回收差异甲基化片段并克隆测序, 采用qRT-PCR技术对DNA甲基化差异基因进行表达分析。结果表明, 不同浓度PbCl2胁迫均显著抑制幼苗的茎粗、根长和根表面积, 且400 μmol L -1及以上浓度PbCl2胁迫显著抑制红麻幼苗的株高和全鲜重。随着铅浓度的提高, 红麻幼苗根系的铅含量显著升高, O2 ?和MDA含量显著增加, SOD活性显著升高, POD活性呈先降低后升高, CAT活性呈先升高后降低的趋势。对照及600 μmol L -1 PbCl2处理下的幼苗根系DNA甲基化率分别为71.13%、62.20%, 其中全甲基化率分别为50.52%、37.80%, 半甲基化率分别为20.62%、24.40%, 即铅胁迫显著降低了红麻幼苗根系的DNA甲基化率和全甲基化率, 提高了根系的半甲基化率。qRT-PCR分析表明, 7个与抗性密切相关的DNA甲基化差异基因也存在表达量差异, 推测DNA甲基化水平变化在响应红麻铅胁迫中发挥重要作用。本结果为深入探索DNA甲基化响应植物非生物胁迫的潜在机制, 以及生产上利用红麻改良土壤铅污染提供了理论基础。
[1] |
Wadhwa S K, Tuzen M, Kazi T G, Soylak M, Hazer B. Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples. Food Chem, 2014,152:75-80.
doi: 10.1016/j.foodchem.2013.11.133 pmid: 24444908 |
[2] | Chen P, Ran S, Li R, Huang Z, Qian J, Yu M, Zhou R. Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Mol Breed, 2014,34:1879-1891. |
[3] |
Finnegan E J, Peacock W J, Dennis E S. DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev, 2000,10:217-223.
doi: 10.1016/s0959-437x(00)00061-7 pmid: 10753779 |
[4] |
Chinnusamy V, Zhu J K. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009,12:133-139.
doi: 10.1016/j.pbi.2008.12.006 pmid: 19179104 |
[5] | 葛才林, 杨小勇, 刘向农, 孙锦荷, 罗时石, 王泽港. 重金属对水稻和小麦DNA甲基化水平的影响. 植物生理与分子生物学学报, 2002,28:363-368. |
Ge C L, Yang X Y, Liu X N, Sun J H, Luo S S, Wang Z G. Effects of heavy metal on the DNA methylation level in rice and wheat. J Plant Physiol Mol Biol, 2002,28:363-368 (in Chinese with English abstract). | |
[6] | Michael M C, Michael N, Eberhard R. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res, 1994,22:3640-3559. |
[7] | 李增强, 史奇奇, 孔祥军, 汤丹峰, 廖小芳, 韦范, 何冰, 莫良玉, 周瑞阳, 陈鹏. 红麻不育系与保持系基因组DNA甲基化比较分析. 中国农业大学学报, 2017,22(11):17-27. |
Li Z Q, Shi Q Q, Kong X J, Tang D F, Liao X F, Wei F, He B, Mo L Y, Zhou R Y, Chen P. Comparative analysis on the kenaf (Hibiscus cannabinus L.) genomic DNA methylation of its male sterility line and maintainer line. J China Agric Univ, 2017,22(11):17-27 (in Chinese with English abstract). | |
[8] | 何玲莉, 沈虹, 王燕, 王娟娟, 龚义勤, 徐良, 柳李旺. 铅胁迫下萝卜基因组DNA甲基化分析. 核农学报, 2015,29:1278-1284. |
He L L, Shen H, Wang Y, Wang J J, Gong Y Q, Xu L, Liu L W. Analysis of genomic DNA methylation level in radish under lead stress. J Nuclear Agric Sci, 2015,29:1278-1284 (in Chinese with English abstract). | |
[9] | 郭单蒂. 重金属Pb、Cd对中华水韭(Isoetes sinensis) DNA甲基化的影响. 哈尔滨师范大学硕士学位论文, 黑龙江哈尔滨, 2014. |
Guo S D. The Effect of Heavy metals of Pb and Cd on DNA Methylation in Isoetes sinensis . MS Thesis of Harbin Normal University, Harbin, Heilongjiang,China, 2014 (in Chinese with English abstract). | |
[10] | 殷欣. 镉胁迫下大豆生理生化特性及DNA甲基化变异的研究. 哈尔滨师范大学硕士学位论文, 黑龙江哈尔滨, 2016. |
Yin X. Soybean Physiological and Biochemical Characteristics and DNA Methylation Variation under Cadmium Stress. MS Thesis of Harbin Normal University, Harbin, Heilongjiang,China, 2016 (in Chinese with English abstract). | |
[11] |
Sciandrello G, Caradonna F, Mauro M, Barbata G. Arsenic- induced DNA hypomethylation affects chromosoma instability in mammalian cells. Carcinogenesis, 2004,25:413-417.
pmid: 14633664 |
[12] | 曹翠玲, 麻鹏达. 植物生理学教学实验指导. 西安: 西北农林科技大学出版社, 2016. pp 96-99. |
Cao C L, Ma P D. Experimental Guidance of Plant Physiology. Xi’an: Northwest A&F University Press, 2016. pp 96-99(in Chinese). | |
[13] | 王学奎, 黄见良. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2015. pp 282-286. |
Wang X K, Huang J L. The Principle and Technology of Plant Physiology and Biochemistry Experiment. Beijing: Higher Education Press, 2015. pp 282-286(in Chinese). | |
[14] | Tang X M, Tao X, Wang Y, Ma D W, Li D, Yang H, Ma X R. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Mol Genet Genomics, 2014,289:1075-1084. |
[15] | 李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 缪绅裕, 陈健辉. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009,28(9):14-16. |
Li R H, Xia Y S, Liu S Z, Sun L L, Guo P G, Miao S Y, Chen J H. CTAB-improved method of DNA extraction in plant. Res Exp Lab, 2009,28(9):14-16 (in Chinese with English abstract). | |
[16] | Zhang L W, Xu Y, Zhang X T, Ma X K, Zhang L L, Liao Z Y, Zhang Q, Wan X B, Chang Y, Zhang J S, Li D X, Zhang L M, Xu J T, Tao A F, Lin L H, Fang P P, Chen S, Qi R, Xu X M, Qi J M, Ming R. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fibre and leaf shape biogenesis. Plant Biotechnol J, 2020,18:1796-1809. |
[17] | 王春晖, 赵云雷, 王红梅, 陈伟, 龚海燕, 桑晓慧. 适用于转录组测序的棉花幼根总RNA提取方法筛选. 棉花学报, 2013,25:372-376. |
Wang C H, Zhao Y L, Wang H M, Chen W, Gong H Y, Sang X H. Screening of methods to isolate high-quality total RNA from young cotton roots. Cotton Sci, 2013,25:372-376 (in Chinese with English abstract). | |
[18] | 原晓龙, 陈剑, 陈中华, 华梅, 王娟, 王毅. 滇牡丹类黄酮7-O-葡萄糖基转移酶基因的鉴定与表达分析. 西部林业科学, 2018,47(5):19-25. |
Yuan X L, Chen J, Chen Z H, Hua M, Wang J, Wang Y. Characterization and expression analysis of a favonoid 7-O-glucosyltransferase gene in Paeonia delavayi. J West China For Sci, 2018,47(5):19-25 (in Chinese with English abstract). | |
[19] | 丁丽雪, 李涛, 李植良, 徐小万, 李颖, 王恒明, 王永飞, 马三梅, 黎振兴. 番茄AT-hook基因家族的鉴定及胁迫条件下的表达分析. 植物遗传资源学报, 2016,17:303-315. |
Ding L X, Li T, Li Z L, Xu X W, Li Y, Wang H M, Wang Y F, Ma S M, Li Z X. Genome-wide identification and expression analysis in oxidative stress of AT-hook gene family in tomato. J Plant Genet Resour, 2016,17:303-315 (in Chinese with English abstract). | |
[20] | Ana Caño-Delgado, Penfield S, Smith C, Catley M, Bevan M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J, 2003,34:351-362. |
[21] | Nguyen H P, Jeong H Y, Kim H, Kim Y C, Lee C. Molecular and biochemical characterization of rice pectin methylesterase inhibitors (OsPMEIs). Plant Physiol Biochem, 2016,101:105-112. |
[22] | 陈江淑, 邓治, 刘辉, 范玉龙, 姜达, 夏立琼, 夏志辉, 李德军. 巴西橡胶树TIM23-1基因克隆、进化及表达分析. 植物生理学报, 2015,51:1735-1742. |
Chen J S, Deng Z, Liu H, Fan Y L, Jiang D, Xia L Q, Xia Z H, Li D J. Cloning, phylogenetic and expression analyses of TIM23-1 gene in Hevea brasiliensis. Plant Physiol Commun, 2015,51:1735-1742 (in Chinese with English abstract). | |
[23] | 夏凯文. 拟南芥WD40家族蛋白TAWD在抵御高温胁迫中的功能研究. 华中师范大学硕士学位论文, 湖北武汉, 2019. |
Xia K W. Function Study of the WD40-repeat Protein TAWA in Arabidopsis Thermotolerance . MS Thesis of Central China Normal Unversity, Wuhan, Hubei,China, 2019 (in Chinese with English abstract). | |
[24] | 李慧芳, 王瑜, 袁庆华, 赵桂琴. 铅胁迫对禾本科牧草的生长及体内酶活性的影响. 种子, 2014,33(8):1-7 |
Li H F, Wang Y, Yuan Q H, Zhao G Q. The impacts of lead stress on the growth of forage grasses and their enzyme activities. Seed, 2014,33(8):1-7 (in Chinese with English abstract). | |
[25] | 张博宇. 铅胁迫对黄花风铃木幼苗生长和生理的影响. 广西大学硕士学位论文,广西南宁, 2019. |
Zhang B Y. Effects of Lead Stress on Growth and Physiology of Tabebuia chrysantha Seedlings. MS Thesis of Guangxi University, Nanning, Guangxi,China, 2019 (in Chinese with English abstract). | |
[26] | 周秋峰, 于沐, 赵建国, 张果果. 重金属胁迫对小麦生长发育及相关生理指标的影响. 中国农学通报, 2017,33(33):7-14. |
Zhou Q F, Yu B, Zhao J G, Zhang G G. Heavy metal stress on growth and development and physiological indexes of wheat. Chin Agric Sci Bull, 2017,33(33):7-14 (in Chinese with English abstract). | |
[27] | Roychoudhury A, Basu S, Sarkar S N, Sengupta D N. Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep, 2008,27:1395-1410. |
[28] | Liang W, Ma X, Wan P, Liu L. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun, 2017,495:286-291. |
[29] | Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016,167:313-324. |
[30] | 李雪林, 林忠旭, 聂以春, 郭小平, 张献龙. 盐胁迫下棉花基因组DNA表观遗传变化的MSAP分析. 作物学报, 2009,35:588-596. |
Li X L, Lin Z X, Nie Y C, Guo X P, Zhang X L. MSAP analysis of epigenetic changes in cotton (Gossypium hirsutum L.) under salt stress. Acta Agron Sin, 2009,35:588-596 (in Chinese with English abstract). | |
[31] | 高桂珍, 应菲, 陈碧云, 李浩, 吕晓丹, 闫贵欣, 许鲲, 伍晓明. 热胁迫过程中白菜型油菜种子DNA的甲基化. 作物学报, 2011,37:1597-1604. |
Gao G Z, Ying F, Chen B Y, Li H, Lyu X D, Yan G X, Xu K, Wu X M. DNA methylation of seed in response to heat stress in Brassica rapa L. Acta Agron Sin, 2011,37:1597-1604 (in Chinese with English abstract). | |
[32] | Mastan S G, Rathore M S, Bhatt V, Yadav P, Chikara J. Assessment of changes in DNA methylation by methylation-sensitive amplification polymorphism in Jatropha curcas L. subjected to salinity stress. Gene, 2012,508:125-129. |
[33] | Wolf S, Mravec J, Greiner S, Grégory M, Hofte H. Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr Biol CB, 2012,22:1732-1737. |
[34] | Ellis C. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell Online, 2001,13:1025-1033. |
[35] |
Vicente R, Javier G A, Pablo V. Enhanced disease resistance to Botrytis cinereal in myb46 Arabidopsis plants is associated to an early downregulation of CesA genes. Plant Signaling Behavior, 2011,6:911-913.
pmid: 21617373 |
[36] | 王津, 韩榕. DNA甲基转移酶赋予拟南芥盐胁迫耐受性. 江苏农业学报, 2019,35:1028-1031. |
Wang J, Han R. DNA methyltransferases confer salt stress tolerance in Arabidopsis thaliana. Jiangsu J Agric Sci, 2019,35:1028-1031 (in Chinese with English abstract). | |
[37] | Li H, Yu M, Du X Q, Wang Z F, Wu W H, Quintero F J, Jin X H, Li H D, Wang Y. NRT1.5/NPF7.3 functions as a proton-coupled H+/K + antiporter for K + loading into the xylem in Arabidopsis . Plant Cell, 2017,29:2016-2026. |
[38] | Criado M V, Roberts I N, Echeverria M, Barneix A J. Plant growth regulators and induction of leaf senescence in nitrogen-deprived wheat plants. J Plant Growth Regul, 2007,26:301-307. |
[39] | Peart J R, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice D C, Baulcombe D C. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA, 2002,99:10865-10869. |
[40] | 李为民. 海岛棉Rar1、Sgt1、Rac1、KTN1基因及中棉cab基因启动子的克隆和功能分析. 中国农业科学院博士学位论文,北京, 2003. |
Li W M. Cloning and Functional Analysis of Gossypium barbadense Rar1, Sgr1, Rac1, KTN1 Genes and Gossypium arboretum cab Promoter. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2003 (in Chinese with English abstract). | |
[41] | 路凯, 张亚东, 朱镇, 陈涛, 赵庆勇, 赵凌, 周丽慧, 姚姝, 赵春芳, 梁文化, 魏晓东, 王才林. 水稻类受体蛋白激酶RLKN1在调节植物耐盐性中的功能研究. 见:江苏省遗传学会2019年学术研讨会论文集. 南京: 江苏省遗传学会, 2019. p 10. |
Lu K, Zhang Y D, Zhu Z, Chen D, Zhao Q Y, Zhao L, Zhou L H, Yao S, Zhao C F, Liang W H, Wei X D, Wang C L. Function of rice receptor-like protein kinase PLKN1 in regulating plant salt tolerance. In: Proceedings of the 2019 Academic Seminar of Jiangsu Genetics Society. Nanjing: Jiangsu Genetics Society, 2019. p 10 (in Chinese). | |
[42] | Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A. Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J, 2013,73:240-249 |
[43] | 代丽红. 杨树盐逆境响应基因PtRabA2f的功能研究. 黑龙江大学硕士学位论文,黑龙江哈尔滨, 2014. |
Dai L H. Study on the Function of Salt Stress Response Gene PtRabA2f in Poplar. MS Thesis of Heilongjiang University, Harbin, Heilongjiang,China, 2014 (in Chinese with English abstract). | |
[44] | 陈淑雯, 郝茜珣, 贾彩霞, 赵爱国, 李大培, 杨桂燕. 核桃WD40转录因子JrATG18a基因的克隆及逆境响应. 植物遗传资源学报, 2018,19:979-986. |
Chen S W, Hao Q X, Jia C X, Zhao A G, Li D P, Yang G Y. Identification and stress response analysis of a WD40 transcription actor JrATG18a gene from Juglans regia. J Plant Genet Resour, 2018,19:979-986 (in Chinese with English abstract). |
[1] | 周步进, 李刚, 金刚, 周瑞阳, 刘冬梅, 汤丹峰, 廖小芳, 刘一丁, 赵艳红, 王颐宁. 利用红麻HcPDIL5-2a非全长基因创制雄性不育新种质[J]. 作物学报, 2021, 47(6): 1043-1053. |
[2] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099. |
[3] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[4] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[5] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922. |
[6] | 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704. |
[7] | 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603. |
[8] | 万雪贝,李东旭,徐益,徐建堂,张力岚,张列梅,林荔辉,祁建民,张立武. 红麻EST-SSR标记的开发及其多态性评价[J]. 作物学报, 2017, 43(08): 1170-1180. |
[9] | 张旸,胡中影,赵月明,李娜,解莉楠. 羽衣甘蓝自交不亲和与自交亲和系种子萌发期DNA甲基化的动态变化[J]. 作物学报, 2016, 42(04): 532-539. |
[10] | 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055. |
[11] | 谭河林,许欣颖,付立曼,向小娥,李剑桥,郭昊伦,叶文雪. 甘蓝型油菜及其亲本物种甲基化酶I基因的克隆及表达模式[J]. 作物学报, 2015, 41(03): 405-413. |
[12] | 张立武,黄枝秒,万雪贝,林荔辉,徐建堂,陶爱芬,方平平,祁建民. 红麻光周期钝感材料的鉴定与遗传分析[J]. 作物学报, 2014, 40(12): 2098-2103. |
[13] | 黄志熊,王飞娟,蒋晗,李志兰,丁艳菲,江琼,陶月良,朱诚. 两个水稻品种镉积累相关基因表达及其分子调控机制[J]. 作物学报, 2014, 40(04): 581-590. |
[14] | 吴绍华,张红宇,薛晶晶,徐培洲,吴先军. 双胚苗水稻来源的单倍体、二倍体及其杂交F1的DNA甲基化位点分析[J]. 作物学报, 2013, 39(01): 50-59. |
[15] | 高桂珍, 应菲, 陈碧云, 李浩, 吕晓丹, 闫贵欣, 许鲲, 伍晓明. 热胁迫过程中白菜型油菜种子DNA的甲基化[J]. 作物学报, 2011, 37(09): 1597-1604. |
|