作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1020-1030.doi: 10.3724/SP.J.1006.2021.04042
• 专题:主要麻类作物基因组学与遗传改良 • 上一篇 下一篇
LI Fu(), WANG Yan-Zhou, YAN Li, ZHU Si-Yuan, LIU Tou-Ming*()
摘要:
苎麻[Boehmeria nivea (L.) Gaud.]是我国特色的天然纤维作物, 其纤维具有拉伸力强、纤维束长等特点。解析苎麻纤维发育调控机制, 对实现纤维产量和品质性状遗传改良具有重要意义。本研究基于高通量测序技术开展了苎麻茎顶部和中部的茎皮组织环状RNA (circRNA)分析, 在2个组织中共鉴定到5268个苎麻circRNA。比较circRNA的表达水平发现, 78个circRNA在2个组织中呈现差异表达。因苎麻茎中部韧皮纤维处于生长发育期, 而茎顶部韧皮纤维尚未起始生长, 推测这78个circRNA是纤维不同发育时期差异表达基因, 它们可能参与了苎麻的纤维发育调控。研究结果将为解析circRNA调控苎麻纤维生长发育机制奠定基础。
[1] | Aldaba V. The structure and development of the cell wall in plants I. Bast fibers of Boehmeria and Linum. Am J Bot, 1927,14:16-24. |
[2] | 蒋杰, 揭雨成, 周清明, 周精华, 朱守晶, 邢虎成, 钟英丽. 苎麻纤维素合酶基因BnCesAl全长cDNA的克隆与表达分析. 植物遗传资源学报, 2012,13:851-857. |
Jiang J, Jie Y C, Zhou Q M, Zhou J H, Zhu S J, Xing H C, Zhong Y L. Full-length cDNA cloning and express analysis of BnCesA1 in ramie. J Plant Genet Resour, 2012,13:851-857 (in Chinese with English abstract). | |
[3] | 刘昱翔, 陈建荣, 彭彦, 黄妤, 赵燕, 黄丽华, 郭清泉, 张学文. 两种苎麻纤维素合酶基因cDNA序列的克隆及表达. 作物学报, 2014,40:1925-1935. |
Liu Y X, Chen J R, Peng Y, Huang Y, Zhao Y, Huang L H, Guo Q Q, Zhang X W. cDNA cloning and expression of two cellulose synthase genes from Boehmerianivea. Acta Agron Sin, 2014,40:1925-1935 (in Chinese with English abstract). | |
[4] | 田志坚, 易蓉, 陈建荣, 郭清泉, 张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析. 作物学报, 2008,34:76-83. |
Tian Z J, Yi R, Chen J R, Guo Q Q, Zhang X W. Cloning and expression of cellulose synthase gene in ramie [Boehmeria nivea (Linn.) Gaud.] Acta Agron Sin, 2008,34:76-83 (in Chinese with English abstract). | |
[5] | 唐映红, 陈建荣, 刘芳, 袁有美, 郭清泉, 昌洪涛. 苎麻肉桂酰辅酶A还原酶基因cDNA序列的克隆与分析. 作物学报, 2015,41:1324-1332. |
Tang Y H, Chen J R, Liu F, Yuan Y M, Guo Q Q, Chang H T. cDNA cloning and analysis of cinnamoyl-CoA reductase gene from Boehmeria nivea. Acta Agron Sin, 2015,41:1324-1332 (in Chinese with English abstract). | |
[6] | Liu F, Chen J, Tang Y, Chang H, Yuan Y, Guo Q. Isolation and characterization of cinnamate 4-hydroxylase gene from cultivated ramie (Boehmeria nivea). Biotechnol Biotechnol Equip, 2018,32:324-331. |
[7] | Tang Y, Liu F, Mao K, Xing H, Chen J, Guo Q. Cloning and characterization of the key 4-coumarate CoA ligase genes in Boehmeria nivea. South Afr J Bot, 2018,116:123-130. |
[8] | Tang Y, Liu F, Xing H, Mao K, Chen G, Guo Q, Chen J. Correlation analysis of lignin accumulation and expression of key genes involved in lignin biosynthesis of ramie (Boehmeria nivea). Genes, 2019,10:389. |
[9] |
Liu T, Zhu S, Tang Q, Chen P, Yu Y, Tang S. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud.) BMC Genomics, 2013,14:125.
doi: 10.1186/1471-2164-14-125 pmid: 23442184 |
[10] | Chen J, Pei Z, Dai L, Wang B, Liu L, An X, Peng D. Transcriptome profiling using pyrosequencing shows genes associated with bast fiber development in ramie (Boehmeria nivea L.). BMC Genomics, 2014,15:919. |
[11] | Batista P J, Chang H Y. Long noncoding RNAs: cellular address codes in development and disease. Cell, 2013,152:1298-1307. |
[12] | Wang J, Huang J S, Hao X Y, Feng Y P, Cai Y J, Sun L Q. miRNAs expression profile in bast of ramie elongation phase and cell wall thickening and end wall dissolving phase. Mol Biol Rep, 2014,41:901-907. |
[13] | Li X, Yang L, Chen L L. The biogenesis, functions, and challenges of circular RNAs. Mol Cell, 2018,71:428-442. |
[14] | Zhang P, Fan Y, Sun X, Chen L, Terzaghi W, Bucher E. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J, 2019,98:697-713. |
[15] | Zuo J, Wang Q, Zhu B, Luo Y, Gao L. Deciphering the roles of circRNAs on chilling injury in tomato. Biochem Biophys Res Commun, 2016,479:132-138. |
[16] | Wang Y, Wang Q, Gao L, Zhu B, Luo Y, Deng Z, Zuo J. Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato. Physiol Plant, 2017,16:311-321. |
[17] | Yin J, Liu M, Ma D, Wu J, Han B. Identification of circular RNAs and their targets during tomato fruit ripening. Postharvest Biol Technol, 2018,136:90-98. |
[18] |
Wang Y, Yang M, Wei S, Qin F, Zhao H, Suo B. Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front Plant Sci, 2016,7:2024.
doi: 10.3389/fpls.2016.02024 pmid: 28105043 |
[19] |
Gao Z, Li J, Luo M, Li H, Chen Q, Wang L, Song S, Zhao L, Xu W, Zhang C. Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1. Plant Physiol, 2019,180:966-985.
doi: 10.1104/pp.18.01331 pmid: 30962290 |
[20] |
Luan M, Jian J, Chen P, Chen J, Chen J, Gao Q, Gao G, Zhou J H, Chen K, Guang X, Chen J, Zhang Q, Wang X, Fang L, Sun Z, Bai M, Fang X, Zhao S, Xiong H, Yu C, Zhu A. Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich Mol Ecol Resour, 2018,18:639-645.
pmid: 29423997 |
[21] | Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol, 2015,16:4. |
[22] | Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak S D, Gregersen L H, Munschauer M. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013,495:333. |
[23] |
Li L, Guo J, Chen Y, Chang C, Xu C. Comprehensive CircRNA expression profile and selection of key CircRNAs during priming phase of rat liver regeneration. BMC Genomics, 2017,18:80.
pmid: 28086788 |
[24] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014,15:550.
pmid: 25516281 |
[25] | Ferreira J, Zwinderman A. On the Benjamini-Hochberg method. Ann Statist, 2006,34:1827-1849. |
[26] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408. |
[27] | Zhong R, Ye Z. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol, 2015,56:195-214. |
[28] | Speicher T, Li P, Wallace I. Phosphor regulation of the plant cellulose synthase complex and cellulose synthase-like proteins. Plants, 2018,7:52. |
[29] |
Gui J, Luo L, Zhong Y, Sun J, Umezawa T, Li L. Phosphorylation of LTF1, an MYB transcription factor in populus, acts as a sensory switch regulating lignin biosynthesis in wood cells. Mol Plant, 2019,12:1325-1337.
pmid: 31145998 |
[30] | Liu C, Yu H, Li L. SUMO modification of LBD30 by SIZ1 regulates secondary cell wall formation in Arabidopsis thaliana. PLoS Genet, 2019,15:e1007928. |
[31] | Huang J H, Qi Y P, Wen S X, Guo P, Chen X M, Chen L S. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci Rep, 2016,6:22900. |
[32] | Sun X, Wang C, Xiang N, Li X, Yang S, Du J, Yang Y, Yang Y. Activation of secondary cell wall biosynthesis by miR319- targeted TCP4 transcription factor. Plant Biotechnol J, 2017,15:1284-1294. |
[33] | 骆甲, 王型力, 孙志超, 吴迪, 张玮, 王正加. 植物环状RNA研究进展. 遗传, 2018,40:467-477. |
Luo J, Wang X L, Sun Z C, Wu D, Zhang W, Wang Z J. Progress in circular RNAs of plants. Hereditas, 2018,40:467-477 (in Chinese with English abstract). | |
[34] |
Chu Q J, Zhang X C, Zhu X T, Liu C, Mao L F, Ye C Y, Zhu Q H, Fan L J. PlantcircBase: a database for plant circular RNAs. Mol Plant, 2017,10:1126-1128.
doi: 10.1016/j.molp.2017.03.003 pmid: 28315753 |
[35] | Wang K, Wang C, Guo B H, Song K, Shi C H, Jiang X, Wang K Y, Tan Y C, Wang L Q, Wang L, Li J J, Li Y, Cai Y, Zhao H W, Sun X Y. CropCircDB: a comprehensive circular RNA resource for crops in response to abiotic stress. Database, 2019. doi: 10.1093/database/baz053. |
[36] | Zhang X G, Ma X L, Ning L L, Li Z F, Zhao K K, Li K, He J L, Yin D M. Genome-wide identification of circular RNAs in peanut (Arachis hypogaea L.). BMC Genomics, 2019,20:653. |
[37] | Zhang J, Liu R, Zhu Y, Gong J, Yin S, Sun P, Feng H, Wang Q, Zhao S J, Wang Z Y, Li G. Identification and characterization of circRNAs responsive to methyl jasmonate in Arabidopsis thaliana. Int J Mol Sci, 2020,21:792. |
[38] |
Li E, Bhargava A, Qiang W, Friedmann M C, Forneris N, Savidge R A, Johnson L, Mansfield S, Ellis B, Douglas C. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in populus. New Phytol, 2012,194:102-115.
doi: 10.1111/j.1469-8137.2011.04016.x pmid: 22236040 |
[39] |
Gong S, Huang G, Sun X, Qin L, Li Y, Zhou L, Li X. Cotton KNL1, encoding a class II KNOX transcription factor, is involved in regulation of fibre development. J Exp Bot, 2014,65:4133-4147.
pmid: 24831118 |
[40] | Li S, Chen M, Yu D, Ren S, Sun S, Liu L, Liu C M. EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. Plant Cell, 2013,25:1774-1786. |
[41] | Zhong R, Burk D H, Nairn C J, Wood-Jones A, Morrison W H, Ye Z H. Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell, 2005,17:1449-1466. |
[1] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[2] | 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081. |
[3] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[4] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[5] | 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455. |
[6] | 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024. |
[7] | 王晓阳,王丽媛,潘兆娥,何守朴,王骁,龚文芳,杜雄明. 亚洲棉短绒突变体纤维发育及其差异基因表达分析[J]. 作物学报, 2020, 46(5): 645-660. |
[8] | 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175. |
[9] | 李萍,侯万伟,刘玉皎. 青海高原耐旱蚕豆品种青海13号响应干旱胁迫蛋白质组学分析[J]. 作物学报, 2019, 45(2): 267-275. |
[10] | 邢芦蔓, 吕伟增, 雷薇, 梁雨欢, 卢洋, 陈军营. 玉米种胚HSP20基因对人工老化处理的响应[J]. 作物学报, 2018, 44(11): 1733-1742. |
[11] | 李永辉,陈琳琳,孙炳剑,王利民,邢小萍,袁虹霞,丁胜利*,李洪连*. 假禾谷镰孢侵染小麦后3种植物激素相关基因的差异表达分析[J]. 作物学报, 2017, 43(11): 1632-1642. |
[12] | DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346. |
[13] | 张小萌,刘松江,龚文芳,孙君灵,庞保印,杜雄明. 植物生长调节剂对彩色棉胚珠离体培养纤维发育的影响[J]. 作物学报, 2017, 43(05): 763-776. |
[14] | 杨慧菊,郭华春*. 低温胁迫下马铃薯的数字基因表达谱分析[J]. 作物学报, 2017, 43(03): 454-463. |
[15] | 陈林波,夏丽飞,田易萍,李梅,宋维希,梁名志,江昌俊. 基于数字基因表达谱分析的茶树花不育基因挖掘[J]. 作物学报, 2017, 43(02): 210-217. |
|