欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1166-1175.doi: 10.3724/SP.J.1006.2019.84166

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响

贾小霞1,2,齐恩芳1,2,刘石1,2,文国宏1,2,*(),马胜1,2,李建武1,2,黄伟1,2   

  1. 1 甘肃省农业科学院马铃薯研究所/甘肃省马铃薯种质资源创新工程实验室, 甘肃兰州730070
    2 农业部西北旱作马铃薯科学观测实验站, 甘肃渭源748201
  • 收稿日期:2018-12-11 接受日期:2019-04-15 出版日期:2019-08-12 网络出版日期:2019-07-16
  • 通讯作者: 文国宏
  • 作者简介:E-mail: jiaxx0601@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31560412);本研究由国家自然科学基金项目(31060200);甘肃省农业科学院科技创新专项(2017GAAS38);国家现代农业产业技术体系建设专项资助(CARS-09-P06)

Effects of over-expression of AtDREB1A gene on potato growth and abiotic stress resistance gene expression

JIA Xiao-Xia1,2,QI En-Fang1,2,LIU Shi1,2,WEN Guo-Hong1,2,*(),MA Sheng1,2,LI Jian-Wu1,2,HUANG Wei1,2   

  1. 1 Potato Research Institute, Gansu Academy of Agricultural Sciences/Gansu Engineering Laboratory of Potato Germplasm Resources Innovation, Lanzhou 730070, Gansu, China
    2 The Ministry of Agriculture, Scientific Observation and Experiment Station of Dry Potato in the Northwest, Weiyuan 748201, Gansu, China
  • Received:2018-12-11 Accepted:2019-04-15 Published:2019-08-12 Published online:2019-07-16
  • Contact: Guo-Hong WEN
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31560412);This study was supported by the National Natural Science Foundation of China(31060200);Science and Technology Support Program of Gansu Academy of Agricultural Sciences(2017GAAS38);China Agriculture Research System(CARS-09-P06)

摘要:

为明确AtDREB1A基因过量表达对马铃薯生长及基因表达的影响, 以马铃薯品种陇薯3号(L3)及其AtDREB1A转基因株系T2为材料, 采用盆栽试验, 在马铃薯盛花期将盆土含水量控制为田间最大持水量(FWC)的45%~50%, 观察转基因前后植株表型, 并研究叶片MDA含量、RWC、SOD和POD活性及其基因表达的差异。结果表明, 正常浇水条件下2个株系各指标差异不大。胁迫20 d后, 转基因植株T2的表型明显好于对照L3, 且RWC显著高于L3; 各株系叶片的MDA含量、SOD和POD活性均明显上升, 但转基因植株MDA含量上升幅度较对照小, 抗氧化保护酶SOD、POD活性升高幅度较对照大, 说明转基因植株细胞膜损伤和膜脂过氧化程度较轻, 植株的耐旱性明显提高。转录组测序及生物信息学分析发现, 转基因材料T2相对于L3的差异表达基因共430个, 其中上调表达基因287个, 下调表达基因143个。功能注释和显著性富集结果表明, 差异表达基因富集涉及 GO 功能分类体系中生物过程、细胞组分和分子功能3个大类别, 且大部分集中在细胞内和膜上, 主要涉及信号传导、氧化还原、生物调解、应激反应、发育过程、系统免疫过程、核酸和蛋白结合转录因子活性、转运活性及催化活性。其中抗非生物胁迫相关蛋白PPR、HSP、P450、MLO等家族的大量基因表达量发生较大变化, 说明这些基因在转AtDREB1A基因马铃薯抵御干旱过程中发挥着非常重要的作用。本研究为进一步解析AtDREB1A基因提高马铃薯抗旱性的调控网络奠定了基础。

关键词: 马铃薯, AtDREB1A基因, 非生物胁迫, 差异表达基因, 干旱

Abstract:

Longshu 3 (L3) and its AtDREB1A transgenic line T2 were planted in the pot experiment. The water content of the soil in pots was controlled to 45%-50% of the maximum water holding capacity (FWC) during the flowering stage of the potato. The phenotype, MDA content, RWC, activities of SOD and POD, and the gene expression level in leaves were analyzed, showing there were no significant differences between the two lines under normal watering conditions. After 20 d of stress treatment, the phenotype of transgenic plants T2 was significantly better than that of control L3, and RWC was significantly higher than that of L3. The MDA content, SOD and POD activities of leaves in each line increased significantly, while the MDA content of transgenic plants increased less than, and the activities of SOD and POD of transgenic plants increased more than those of the control, indicating that the cell membrane damage and membrane lipid peroxidation of the transgenic plants were lighter than those of the control, and the drought tolerance of transgenic plants was significantly improved. Transcriptome sequencing and bioinformatic analysis showed that compared with L3, there were 430 differentially expressed genes in T2, including 287 up-regulated genes and 143 down-regulated genes. Functional annotation and significance enrichment showed that all differentially expressed genes were involved in three broad categories of GO functional classification systems, that was biological processes, cell components and molecular functions. Most of these differentially expressed genes concentrated on the membrane in cells, and mainly related to signal transduction, redox, biological mediation, stress response, development process, system immune process, nucleic acid and protein binding transcription factor activity, transport activity and catalytic activity. The expression of a large number of abiotic stress-related genes was up-regulated, including PPR protein family, P450 protein family, heat shock protein family and MLO protein family, indicating that these genes play a very important role in drought-stress resistance of AtDREB1A transgenic potato. This study lays a foundation for further understanding AtDREB1A’s regulatory network to improve potato drought resistance.

Key words: potato, AtDREB1Agene, abiotic stress, differentially expressed genes, drought

表1

用于qRT-PCR表达验证的基因及其引物"

基因 ID
Gene ID
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
EF1α ATTGGAAACGGATATGCTCCA TCCTTACCTGAACGCCTGTCA
AtDREB1A GCCGATCAGCCTGTCTCAAT TCTGCCATATTAGCCAACAAACTC
PGSC0003DMG400016489 AAATGTGTCTTTCAAGCGAA TCCATCTTCCCACATTTACCGTA
PGSC0003DMG400011977 CTTTGCCTGAGAATATTGACT CTTTGGGATTACTACTAGCCTT
PGSC0003DMG400000534 CCGACGATACAAACATATACTGA TGAGTTCCTTCCAGCGATT
PGSC0003DMG402019042 CCAACTCAGAACTGGTACGGACA CGTAAACATCCGTTGGGACCAT
PGSC0003DMG400000242 AACAGCCAGAAGAAGTTGAT ATTCCCATCACAGGCATCTCA
PGSC0003DMG401018057 AGGATCCATTAAAGTTCAAGCCA AATCCTTGAAGAAGCCTAGCA

图1

干旱胁迫下转基因及其对照马铃薯表型分析"

图2

干旱胁迫下马铃薯叶片SOD和POD活性的变化 相同处理标以不同字母的柱值在P < 0.05水平上差异显著。"

图3

干旱胁迫下马铃薯叶片MDA含量和RWC的变化 相同处理标以不同字母的柱值在 P < 0.05 水平上差异显著。"

图4

马铃薯叶片中AtDREB1A基因表达的实时荧光定量分析 相同处理标以不同字母的柱值在 P < 0.05 水平上差异显著。"

图5

干旱胁迫后马铃薯叶片中差异基因表达量火山图 横坐标代表基因在不同样品中表达倍数变化; 纵坐标代表基因表达量变化的统计学显著程度。图中每个基因均由一个点表示, 黑色圆点表示无显著性差异的基因, 左侧绿色圆点表示有显著性差异的下调基因, 右侧红色圆点表示有显著性差异的上调基因。"

图6

差异表达基因GO注释聚类图 横坐标为GO各分类内容, 纵坐标左边为基因数目所占百分比, 右边为基因数目。"

图7

干旱胁迫下PPR蛋白家族基因表达模式聚类图 图中连线表示各个基因变化趋势的相近程度, 线越短越相近。红色表示上调表达水平, 绿色表示下调表达水平。"

图8

干旱胁迫下HSP蛋白家族基因表达模式聚类图 图中连线表示各个基因变化趋势的相近程度, 线越短越相近。红色表示上调表达水平, 绿色表示下调表达水平。"

图9

干旱胁迫下P450蛋白家族基因表达模式聚类图 图中连线表示各个基因变化趋势的相近程度, 线越短越相近。红色表示上调表达水平, 绿色表示下调表达水平。"

图10

干旱胁迫下MLO蛋白家族基因表达模式聚类图 图中连线表示各个基因变化趋势的相近程度, 线越短越相近。红色表示上调表达水平, 绿色表示下调表达水平。"

图11

干旱胁迫下L3 vs. T2差异表达基因的qRT-PCR验证"

[1] Seki M, Narusaka M, Abe H, Kasuga M, Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K . Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA micro array. Plant Cell, 2001,13:61-72.
[2] Fowler S, Thomashow M F . Arabidopsis transcription profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002,14:1675-1690.
[3] 王萍, 高世庆, 郭永来, 程宪国, 王罡, 马有志, 季静 . 利用农杆菌介导将抗逆相关基因GmDREB导入大豆的研究. 大豆科学, 2008,27:47-51.
Wang P, Gao S Q, Guo Y L, Cheng X G, Wang Z, Ma Y Z, Ji J . Transformation of stress resistance related gene GmDREB into soybean via Agrobacterium-mediation. Soybean Sci, 2008,27:47-51 (in Chinese with English abstract).
[4] Courtois B, McLaren G, Sinha P K, Prasad K, Yadav R, Shen L . Mapping QTLs associated with drought avoidance in upland rice. Mol Breed, 2000,6:55-66.
doi: 10.1023/A:1009652326121
[5] 刘录祥, 赵林姝, 梁欣欣, 郑企成, 刘强, 王晶, 郭会君, 赵世荣, 陈文华 . 基因枪法获得逆境诱导转录因子DREB1A转基因小麦的研究. 中国生物工程杂志, 2003,23(11):53-56.
Liu L X, Zhao L S, Liang X X, Zheng Q C, Liu Q, Wang J, Guo H J, Zhao S R, Chen W H . Study on production of transgenic wheat with a stress-inducible transcription factor gene DREB1A by microprojectile bombardment. China Biotechnol, 2003,23(11):53-56 (in Chinese with English abstract).
[6] Pellegrineschi A, Reynolds M, Pacheco M, Brito R M, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D . Stress-induced expression in wheat of the Arobidopsls thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Geneme, 2004,47:493-500.
[7] 许昆朋 . 转AtCBF3基因马铃薯提高抗冷性的研究. 山东农业大学硕士毕业论文, 山东泰安, 2011.
Xu K P . Studies on the Mechanisms of Enhanced Chilling Tolerance in Potato Transformed with AtCBF3 Gene. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2011 (in Chinese with English abstract).
[8] Dou H O, Xu K P, Meng Q W, Li G, Yang X H . Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. Plant Cell Environ, 2014,38:61-72.
[9] 贾小霞, 齐恩芳, 王一航, 文国宏, 龚成文, 王红梅, 李建武, 马胜, 胡新元 . 转录因子DREB1A基因和Bar基因双价植物表达载体的构建及对马铃薯遗传转化的研究. 草业学报, 2014,23(3):110-114.
doi: 10.11686/cyxb20140312
Jia X X, Qi E F, Wang Y H, Wen G H, Gong C W, Wang H M, Li J W, Ma S, Hu X Y . Construction of a bivalent plant expression vector of DREB1A and Bar genes and studies of genetic transformation of potato. Acta Pratac Sin, 2014,23(3):110-114 (in Chinese with English abstract).
doi: 10.11686/cyxb20140312
[10] 贾小霞, 齐恩芳, 马胜, 胡新元, 王一航, 文国宏, 龚成文, 李建武 . 转DREB1A/Bar双价基因马铃薯的耐旱性及除草剂抗性分析. 草业学报, 2015,24(11):58-64.
Jia X X, Qi E F, Ma S, Hu X Y, Wang Y H, Wen G H, Gong C W, Li J W . Analysis of drought tolerance and herbicide resistance in transgenic potato plants over-expressing DREB1A/Bar. Acta Pratacul Sin, 2015,24(11):58-64 (in Chinese with English abstract).
[11] 张治安, 张美善, 蔚荣海 . 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2004. pp 265-296.
Zhang Z A, Zhang M S, Wei R H. Plant Physiology Experiment Guide. Beijing: China Agricultural Science and Technology Press, 2004. pp 265-296(in Chinese).
[12] 康雯 . 土壤自然失水胁迫对地锦幼苗生理生化特性的影响. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2010.
Kang W . Effect of Soil Natural Water Stress on Physiological and Biochemical Indexes in Parthenocissus tricuspidata Seedling. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2010 (in Chinese with English abstract).
[13] 许冰霞, 尹美强, 温银元, 裴帅帅, 柯贞进, 张彬, 原向阳 . 谷子萌发期响应干旱胁迫的基因表达谱分析. 中国农业科学, 2018,51:1431-1447.
Xu B X, Yin M Q, Wen Y Y, Pei S S, Ke Z J, Zhang B, Yuan X Y . Gene expression profiling of foxtail millet ( Setaria italica L.) under drought stress during germination. Sci Agric Sin, 2018,51:1431-1447 (in Chinese with English abstract).
[14] 李健 . ScCBF1StCBF1转录因子在马铃薯应答低温、干旱及盐胁迫过程中存在功能差异. 山东农业大学硕士学位论文, 山东泰安, 2018.
Li J . ScCBF1 and StCBF1 have Different Function in Response to Freezing, Drought and Salt Stress in Potato. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2018 (in Chinese with English abstract).
[15] 杜建雄, 侯向阳, 刘金荣 . 草地早熟禾对干旱及旱后复水的生理响应研究. 草业学报, 2010,19(2):31-38.
doi: 10.11686/cyxb20100205
Du J X, Hou X Y, Liu J R . A study on physiological response to drought and re-watering treatments in Kentucky bluegrass. Acta Pratac Sin, 2010,19(2):31-38 (in Chinese with English abstract).
doi: 10.11686/cyxb20100205
[16] 刘明稀, 卢少云, 郭振飞 . 假俭草抗旱变异体的筛选及其生理鉴定. 草业学报, 2012,21(1):126-132.
doi: 10.11686/cyxb20120116
Liu M X, Lu S Y, Guo Z F . Selection and physiological identification of somaclonal variants for increased drought resistance of centipedegrass. Acta Pratac Sin, 2012,21(1):126-132 (in Chinese with English abstract).
doi: 10.11686/cyxb20120116
[17] 李源, 刘贵波, 高洪文, 孙桂枝, 赵海明, 谢楠 . 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应. 草业学报, 2010,19(4):79-86.
doi: 10.11686/cyxb20100411
Li Y, Liu G B, Gao H W, Sui G Z, Zhao H M, Xie N . A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage. Acta Pratac Sin, 2010,19(4):79-86 (in Chinese with English abstract).
doi: 10.11686/cyxb20100411
[18] 张海娜, 李小娟, 李存东, 肖恺 . 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响. 作物学报, 2008,34:1403-1408.
Zhang H N, Li X J, Li C D, Xiao K . Effects of overexpression of wheat superoxide dismutase (SOD) genes on salt tolerant capability in tobacco. Acta Agron Sin, 2008,34:1403-1408 (in Chinese with English abstract).
[19] 范敏, 金黎平, 刘庆昌, 屈冬玉 . 马铃薯PPR蛋白家族基因SoDIPPR的克隆及其在干旱条件下的表达特征分析. 中国农业科学, 2008,41:2249-2257.
Fan M, Jin L P, Liu Q C, Qu D Y . Cloning of SoDIPPR gene of pentatricopeptide repeat (PPR) protein family in potato and analysis of expression characteristics under drought conditions. Sci Agric Sin, 2008,41:2249-2257 (in Chinese with English abstract).
[20] Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N . Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics, 2006,5:484-496.
doi: 10.1074/mcp.M500251-MCP200
[21] Baldwin J C, Dombrowski J E . Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis. Plant Sci, 2006,171:459-469.
[22] Ma S, Gong Q, Bohnert H J . Dissecting salt stress pathways. J Exp Bot, 2006,57:1097-1107.
doi: 10.1093/jxb/erj098
[23] Baxter C J, Redestig H, Schauer N, Repsilber D, Patil K R, Nielsen J, Selbig J, Liu J, Fernie A R, Sweetlove L J . The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol, 2007,143:312-325.
[24] Umbach A L, Fiorani F, Siedow J N . Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol, 2005,139:1806-1820.
[25] Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian S Y, Ober E S, Salekdeh G H . Proteome analysis of sugar beet leaves under drought stress. Proteomics, 2005,5:950-960.
doi: 10.1002/(ISSN)1615-9861
[26] Wang W, Vinocur B, Shoseyov O, Altman A . Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 2004,9:244-252.
doi: 10.1016/j.tplants.2004.03.006
[27] 崔会婷, 王珍, 张铁军, 蒋旭, 龙瑞才, 杨青川, 康俊梅 . 蒺藜苜蓿MtCYP450基因的克隆及功能分析. 中国草地学报, 2018,40(5):1-10.
Cui H T, Wang Z, Zhang T J, Jiang X, Long R C, Yang Q C, Kang J M . Clong and functional analysis of gene MtCYP450 from Medicago truncatula. Chin J Grassl, 2018,40(5):1-10 (in Chinese with English abstract).
[28] Van Nguyen N T, Vo K T X, Park H, Jeon J S, Jung K H . A systematic view of the MLO family in rice suggests their novel roles in morphological development, diurnal responses, the light- signaling pathway, and various stress responses. Front Plant Sci, 2016,7:1413, doi: 10.3389/fpls.2016.01413.
[29] Wang X, Ma Q, Dou K . Genome-wide characterization and comparative analysis of the MLO gene family in cotton. Plant Physiol Biochem, 2016,103:106-119.
[30] Lim C W, Lee S C . Functional roles of the pepper MLO protein gene, CaMLO2, in abscisic acid signaling and drought sensitivity. Plant Mol Biol, 2013,85:1-10.
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[3] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[4] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[7] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[8] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[9] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[10] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[13] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[14] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!