欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (1): 86-98.doi: 10.3724/SP.J.1006.2022.04285

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析

荐红举1,2,3(), 尚丽娜1,2,3(), 金中辉1,2,3, 丁艺1, 李燕1,3, 王季春1,2,3, 胡柏耿4, Vadim Khassanov5, 吕典秋1,2,3,*()   

  1. 1西南大学农学与生物科技学院, 重庆 400715
    2南方山地农业教育部工程研究中心, 重庆 400715
    3薯类生物学与遗传育种重庆市重点实验室, 重庆 400715
    4国家马铃薯工程技术研究中心, 山东德州 253600
  • 收稿日期:2020-12-29 接受日期:2021-04-14 出版日期:2022-01-12 网络出版日期:2021-05-20
  • 通讯作者: 吕典秋
  • 作者简介:荐红举, E-mail: hjjian518@swu.edu.cn
    尚丽娜, E-mail: cxldshanglina@163.com第一联系人:**同等贡献
  • 基金资助:
    国家自然科学基金资助项目(32101659);科技部科技伙伴计划项目(KY201904016);国家重点研发计划项目(2018YFE0127900);西南大学人才引进项目资助(SWU019008);西南大学人才引进项目资助(SWU020009)

Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato

JIAN Hong-Ju1,2,3(), SHANG Li-Na1,2,3(), JIN Zhong-Hui1,2,3, DING Yi1, LI Yan1,3, WANG Ji-Chun1,2,3, HU Bai-Geng4, Vadim Khassanov5, LYU Dian-Qiu1,2,3,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
    3Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
    4National Engineering Research Center for Potato, Dezhou 253600, Shandong, China
  • Received:2020-12-29 Accepted:2021-04-14 Published:2022-01-12 Published online:2021-05-20
  • Contact: LYU Dian-Qiu
  • About author:First author contact:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32101659);Science and Technology Partnership Program, Ministry of Science and Technology of China(KY201904016);National Key Research and Development Program of China(2018YFE0127900);Talent Introduction Program of Southwest University Project(SWU019008);Talent Introduction Program of Southwest University Project(SWU020009)

摘要:

植物光敏色素作用因子(phytochrome interacting factors, PIFs)属于碱性-螺旋-环-螺旋(basic helix-loop-helix, bHLH)转录因子家族, 通过将光和温度等外部环境信号与植物体内源信号途径相整合, 进而形成复杂的信号转导网络来精密调控植物的生长发育进程。目前, 关于马铃薯PIF家族基因的研究较少, 鉴定和分析StPIF家族成员有助于进一步提高马铃薯的产量和品质。本研究运用生物信息学方法, 以拟南芥PIF家族成员蛋白序列作为源序列, 通过在马铃薯基因组数据库中进行BlastP分析鉴定出7个StPIFs家族成员, 并对其进行系统进化、染色体分布、复制事件、蛋白理化性质、基因结构、Motif预测、启动子顺式作用元件、基因表达模式以及对高温胁迫的响应分析。结果显示, StPIF家族所有成员均含有Motif 1 (bHLH结构域)、Motif 2 (APB结构域)基序; 在StPIF基因的启动子区域预测到多个参与光响应、激素、干旱、低温、昼夜节律以及防御和应激反应调控元件; 基因表达模式和现蕾期高温胁迫响应分析表明, 家族成员具有明显的组织表达特异性, 基因存在功能分化, 且大部分StPIF成员对生物胁迫和高温等非生物胁迫具有明显响应。以上研究结果极大丰富了我们对StPIF家族的认识, 为进一步探究StPIF基因在马铃薯生长期应对生物胁迫以及在结薯期应对高温等非生物胁迫中发挥的功能奠定了理论基础。

关键词: 马铃薯(Solanum tuberosum L.), PIF家族, 生物信息学, 高温, 表达模式分析

Abstract:

Phytochrome interacting factors (PIFs) belong to the basic helix-loop-helix (bHLH) transcription factor family, which integrates external environmental signals such as light and temperature with plant endogenous signal pathways, and then form a complex signal transduction network to precisely regulate the growth and development of plants. Up to now, there are few studies of PIF family genes in potato. Identification and analysis of StPIF family members will help to further improve the yield and quality of potatoes. In this study, BlastP analysis was performed in the potato genome database using Arabidopsis PIFs family member protein sequences as source sequences and seven StPIFs family members were identified. Systemic evolution, chromosome distribution, replication events, protein physicochemical properties, gene structure, motif prediction, promoter cis-acting elements, gene expression pattern, and the response to high temperature stress were also conducted. These results showed that all members of the StPIFs gene family contain Motif 1 (bHLH domain) and Motif 2 (APB domain); multiple cis-regulatory elements involved in light response, hormones, drought, low temperature, and circadian rhythm as well as defense and stress response regulatory elements were predicted in the promoter regions of the StPIF genes. Results of gene expression patterns and high temperature stress response at budding stage revealed that StPIFs family members had obvious tissue expression specificity, indicating their functional differentiation, and most StPIFs members had obvious responses to biotic stress and abiotic stresses including high temperature. In conclusion, these foundlings greatly enriched the understanding of the members of the StPIF family, and laid a theoretical foundation for further exploring the functions of StPIFs genes in responses to biotic stress and abiotic stress during potato growth period including high temperature at tuber stage.

Key words: potato (Solanum tuberosum L.), PIF family, bioinformatics, high temperature, the relative expression pattern

表1

本研究所用引物"

引物
Primer
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
ef1α
StPIF1a
StPIF1b
StPIF3
StPIF4
StPIF8
ATTGGAAACGGATATGCTCCA
GTTTCACACGTACCCGATAATG
GTACTTCGACTGTAGAGATCCG
GAGTTTAGGTATGGGTATGGGG
TGAACTTCCTGTTCCACATCAA
AATCAGTGTGTACCGAGTTG
TCCTTACCTGAACGCCTGTCA
GAAATGTCACATGTAGTCGTCG
TTTGAATCCACAATCGTCGATG
TACAGCTATTCCTGGATAAGCG
TTCATTAGGATCATAGCCTGGC
CTAACCCATGCATTGCTAAC

表2

马铃薯PIFs家族成员的序列特性"

基因
Gene
基因编号
Gene ID
氨基酸数目
Number of amino acids (aa)
分子量Molecular weight (kD) 等电点Isoelectric point (pI) 位置
Location
功能域
Functional domains
(Start-End, bp)
StPIF1a PGSC0003DMG400018950 578 62.94 6.42 ch09:45450532-45460120 343-406/bHLH
StPIF1b PGSC0003DMG400014705 515 56.41 5.13 ch06:2038519-2047215 309-372/bHLH
StPIF3 PGSC0003DMG400018280 708 75.83 7.26 ch01:79007967-79013234 450-512/bHLH
StPIF4 PGSC0003DMG401015926 517 57.44 7.09 ch07:42074703-42078252 331-394/bHLH
StPIF7a PGSC0003DMG400024554 437 48.17 6.79 ch03:55395567-55398080 237-298/bHLH
StPIF7b PGSC0003DMG400033087 416 46.81 8.71 ch06:51466651-51468759 195-252/bHLH
StPIF8 PGSC0003DMG400025976 464 50.75 7.62 ch01:70077080-70081427 281-344/bHLH

图1

拟南芥、马铃薯和番茄PIF氨基酸多序列比对 A: APB结构域; B: APA结构域; C: bHLH结构域。"

图2

PIF基因家族系统发育进化树 At: 拟南芥; St: 马铃薯; Sl: 番茄; Os: 水稻; Zm: 玉米。"

图3

马铃薯PIF基因结构和保守基序 Motif: 保守基序; UTR: 非翻译区; CDS: 编码区序列。"

图4

马铃薯PIFs家族成员保守基序"

图5

马铃薯PIF基因家族共线性分析"

图6

马铃薯、拟南芥和番茄PIF基因的共线性分析"

图7

马铃薯StPIF基因启动子中与胁迫反应和植物发育相关的顺式作用元件"

图8

马铃薯PIF启动子序列保守基序"

图9

马铃薯PIF家族成员启动子保守基序"

图10

马铃薯PIF启动子序列结合转录因子"

图11

马铃薯PIF基因对环境胁迫的响应"

图12

高温胁迫下StPIF家族基因在不同组织部位的表达分析"

[1] Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee H S, Sun T P, Kamiya Y, Choi G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell, 2007, 19:1192-1208.
[2] Kumar S V, Lucyshyn D, Jaeger K E, Alos E, Alvey E, Harberd N P, Wigge P A. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012, 484:242-245.
[3] Sun W, Han H, Deng L, Sun C, Xu Y, Lin L, Ren P, Zhao J, Zhai Q, Li C. Mediator subunit MED25 physically interacts with PHYTOCHROME INTERACTING FACTOR4 to regulate shade-induced hypocotyl elongation in tomato. Plant Physiol, 2020, 184:1549-1562.
[4] Gao Y, Jiang W, Dai Y, Xiao N, Zhang C Q, Li H, Lu Y, Wu M Q, Tao X Y, Deng D X, Chen J M. A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol Biol, 2015, 87:413-428.
[5] Jiang B C, Shi Y T, Zhang X Y, Xin X Y, Qi L J, Guo H W, Li J G, Yang S H. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2017, 114:E6695-E6702.
[6] Gao Y, Wu M, Zhang M, Jiang W, Liang E, Zhang D, Zhang C, Xiao N, Chen J. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol Biol, 2018, 97:311-323.
[7] Gao Y, Wu M, Zhang M, Jiang W, Ren X, Liang E, Zhang D, Zhang C, Xiao N, Li Y, Dai Y, Chen J. A maize phytochrome-interacting factors protein ZmPIF1 enhances drought tolerance by inducing stomatal closure and improves grain yield in Oryza sativa L. Plant Biotechnol J, 2018, 16:1375-1387.
[8] Lee N, Choi G. Phytochrome-interacting factor from Arabidopsis to liverwort. Curr Opin Plant Biol, 2017, 35:54-60.
[9] Castillon A, Shen H, Huq E. Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci, 2007, 12:514-521.
[10] Koini M A, Alvey L, Allen T, Tilley C A, Harberd N P, Whitelam G C, Franklin K A. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol, 2009, 19:408-413.
[11] Franklin K A, Lee S H, Patel D, Kumar S V, Spartz A K, Gu C, Ye S, Yu P, Breen G, Cohen J D, Wigge P A, Gray W M. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA, 2011, 108:20231-20235.
[12] Lau O S, Song Z, Zhou Z, Davies K A, Chang J, Yang X, Wang S, Lucyshyn D, Tay I H Z, Wigge P A, Bergmann D C, Direct control of SPEECHLESS by PIF4 in the high-temperature response of stomatal development. Curr Biol, 2018, 28:1273-1280.
[13] 陈淼, 谢赛, 王超智, 李焱龙, 张献龙, 闵玲. 棉花GhPIF4调控高温下花药败育机制初探. 作物学报, 2020, 46:1368-1379.
Chen M, Xie S, Wang C Z, Li Y L, Zhang X L, Min L. Mechanism of GhPIF4 regulating anther abortion under high temperature stress in cotton. Acta Agron Sin, 2020, 46:1368-1379 (in Chinese with English abstract).
[14] 冯韬, 谭晖, 官梅, 官春云. BnaBZR1BnaPIF4基因调控甘蓝型油菜弱光光效的机制. 作物学报, 2020, 46:1146-1156.
Feng T, Tan H, Guan M, Guan C Y. Mechanism of BnaBZR1 and BnaPIF4 regulating photosynthetic efficiency in oilseed rape(Brassica napus L.) under poor light. Acta Agron Sin, 2020, 46:1146-1156 (in Chinese with English abstract).
[15] Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, Shinwari Z K, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol, 2009, 151:2046-2057.
[16] 王小欢. 马铃薯试管块茎形成有关的光敏感基因筛选与鉴定. 华中农业大学硕士学位论文,湖北武汉, 2014. pp 27-30.
Wang X H. The Screening and Identification of Photoperiod- Sensitive Genes Which Relate to Microtuber Formation. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei,China, 2014. pp 27-30 (in Chinese with English abstract).
[17] 李明, 谢海娟, 叶广继, 杨永智, 王舰, 周云. 马铃薯光敏色素作用因子基因PIF4的克隆及表达分析. 分子植物育种, 2018, 16:6193-6201.
Li M, Xie H J, Ye G J, Yang Y Z, Wang J, Zhou Y. Isolation and expression analysis of potato phytochrome interacting factor gene StPIF4. Mol Plant Breed, 2018, 16:6193-6201 (in Chinese with English abstract).
[18] Chow C N, Lee T Y, Hung Y C, Li G Z, Tseng K C, Liu Y H, Kuo P L, Zheng H Q, Chang W C. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res, 2018, 47:D1155-D1163.
[19] Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109:1187-1192.
[20] Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso J M, Ecker J R, Quail P H. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell, 2008, 20:337-352.
[21] Nakamura Y, Kato T, Yamashino T, Murakami M, Mizuno T. Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa L. Biosci Biotechnol Biochem, 2007, 71:1183-1191.
[22] Gao Y, Ren X, Qian J. The phytochrome-interacting family of transcription factors in maize (Zea mays L.): identification, evolution, and expression analysis. Acta Physiol Plant, 2019, 41:8.
[23] Rosado D, Gramegna G, Cruz A, Lira B S, Freschi L, de Setta N, Rossi M, Phytochrome interacting factors (PIFs) in Solanum lycopersicum: diversity, evolutionary history and expression profiling during different developmental processes. PLoS One, 2016, 11:e0165929.
[24] 徐向东, 任逸秋, 张利, 李煜, 王丽娟, 卢孟柱. 杨树PIF基因家族成员表达模式研究. 林业科学研究, 2018, 31(2):19-25.
Xu X D, Ren Y Q, Zhang L, Li Y, Wang L J, Lu M Z. Analysis of expression pattern of PIF family members in populus. For Res, 2018, 31(2):19-25 (in Chinese with English abstract).
[25] Zhang K, Zheng T, Zhu X, Jiu S, Liu Z, Guan L, Jia H, Fang J. Genome-wide identification of PIFs in Grapes(Vitis vinifera L.) and their transcriptional analysis under lighting/shading conditions. Genes (Basel), 2018, 9:451.
[26] Ma J Q, Jian H J, Yang B, Lu K, Zhang A X, Liu P, Li J N. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape(Brassica napus L.). Gene, 2017, 620:36-45.
[27] 王金英, 丁峰, 潘介春, 张树伟, 杨亚涵, 黄幸, 范志毅, 李琳, 王颖. 植物bZIP转录因子家族的研究进展. 热带农业科学, 2019, 39(6):39-45.
Wang J Y, Ding F, Pan J C, Zhang S W, Yang Y H, Huang X, Fang Z Y, Li L, Wang Y. Research progress of bZIP lineage transcription factors in plant. Chin J Trop Agric, 2019, 39(6):39-45 (in Chinese with English abstract).
[28] 王瑞芳, 胡银松, 高文蕊, 张宜欣, 宋兴舜. 植物NAC转录因子家族在抗逆响应中的功能. 植物生理学报, 2014, 50:1494-1500.
Wang R F, Hu Y S, Gao W R, Zhang Y X, Song X S. Functions of NAC transcription factors family in stress responses in plants. Plant Physiol J, 2014, 50:1494-1500 (in Chinese with English abstract).
[29] 孙淑豪, 余迪求. WRKY转录因子家族调控植物逆境胁迫响应. 生物技术通报, 2016, 32(10):66-76.
Sun S H, Yu D Q. WRKY transcription factors in regulation of stress response in plant. Biotechnol Bull, 2016, 32(10):66-76 (in Chinese with English abstract).
[30] 刘丽娟, 高辉. TCP家族基因研究进展. 生物技术通报, 2016, 32(9):14-22.
Liu L J, Gao H. Research progress on the family of TCP genes. Biotechnol Bull, 2016, 32(9):14-22 (in Chinese with English abstract).
[31] Levy D, Veilleux R E. Adaptation of potato to high temperatures and salinity: a review. Am J Potato Res, 2007, 84:487-506.
[32] Aien, A, Chaturvedi A K, Bahuguna R N, Pal M. Phenological sensitivity to high temperature stress determines dry matter partitioning and yield in potato. Plant Physiol, 2016, 22:63-69.
[33] Holden N, Brereton A, Fealy R, Sweeney J. Possible change in Irish climate and its impact on barley and potato yields. Agric For Meteorol, 2003, 116:181-196.
[34] Hijmans R J. The effect of climate change on global potato production. Am J Pot Res, 2003, 80:271-279.
[1] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[2] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[3] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[4] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[5] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[6] 陈淼, 谢赛, 王超智, 李焱龙, 张献龙, 闵玲. 棉花GhPIF4调控高温下花药败育机制初探[J]. 作物学报, 2020, 46(9): 1368-1379.
[7] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[8] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[9] 张卫娜,范艳玲,康益晨,杨昕宇,石铭福,要凯,赵章平,张俊莲,秦舒浩. 对马铃薯类受体激酶CRK基因家族的鉴定及响应病原真菌信号的表达分析[J]. 作物学报, 2020, 46(5): 680-689.
[10] 刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制[J]. 作物学报, 2020, 46(3): 440-447.
[11] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[12] 姚珺玥,华营鹏,周婷,王涛,宋海星,官春云,张振华. 甘蓝型油菜AVP1、VHA-a2VHA-a3基因的鉴定及功能性研究[J]. 作物学报, 2019, 45(8): 1146-1157.
[13] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[14] 郭丽丽,张茜茜,郝立华,乔雅君,陈文娜,卢云泽,李菲,曹旭,王清涛,郑云普. 大气CO2倍增条件下冬小麦气体交换对高温干旱及复水过程的响应[J]. 作物学报, 2019, 45(6): 949-956.
[15] 田景山,张煦怡,张丽娜,徐守振,祁炳琴,随龙龙,张鹏鹏,杨延龙,张旺锋,勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件[J]. 作物学报, 2019, 45(4): 613-620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!