欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 997-1019.doi: 10.3724/SP.J.1006.2021.04121

• 专题:主要麻类作物基因组学与遗传改良 • 上一篇    下一篇

主要麻类作物基因组学与遗传改良: 现状与展望

徐益1,2,3(), 张力岚1,2,3, 祁建民1,2, 张列梅1, 张立武1,2,3,*()   

  1. 1福建农林大学农学院/作物遗传育种与综合利用教育部重点实验室/福建省作物设计育种重点实验室, 福建福州 350002
    2福建农林大学农业农村部东南黄红麻实验观测站/福建省麻类种质资源共享平台/福建省南方经济作物遗传育种与多用途开发国际科技合作基地, 福建福州 350002
    3福建农林大学海峡联合研究院基因组与生物技术中心, 福建福州 350002
  • 收稿日期:2020-05-01 接受日期:2021-01-11 出版日期:2021-06-12 网络出版日期:2021-01-25
  • 通讯作者: 张立武
  • 作者简介:E-mail:1275924118@qq.com
  • 基金资助:
    国家自然科学基金项目(31771369);国家自然科学基金项目(31972968);国家现代农业产业技术体系建设专项(CARS-19-E06)

Genomics and genetic improvement in main bast fiber crops: advances and perspectives

XU Yi1,2,3(), ZHANG Li-Lan1,2,3, QI Jian-Min1,2, ZHANG Lie-Mei1, ZHANG Li-Wu1,2,3,*()   

  1. 1Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops/Fujian Key Laboratory for Crop Breeding by Design/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Experiment Station of Jute and Kenaf in Southeast China, Ministry of Agriculture and Rural Affairs/Public Platform of Fujian for Germplasm Resources of Bast Fiber Crops/Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2020-05-01 Accepted:2021-01-11 Published:2021-06-12 Published online:2021-01-25
  • Contact: ZHANG Li-Wu
  • Supported by:
    The National Natural Science Foundation of China(31771369);The National Natural Science Foundation of China(31972968);The China Agriculture Research System(CARS-19-E06)

摘要:

随着测序技术的发展, 主要麻类作物(黄麻、红麻、苎麻、亚麻和工业大麻)参考基因组从2011年至2020年陆续完成测序, 这标志着麻类作物科学已经进入基因组时代。文章首先详细概述主要麻类作物基因组测序。其次, 评述了基于基因组学的麻类作物重要应用价值基因挖掘。基于参考基因组和转录组测序, 大量关于纤维发育、响应非生物胁迫的候选基因被挖掘, 以促进麻类作物纤维的物种特性和“不与粮食争好地”的逆境农业。同时不同麻类作物特异性状候选基因陆续被报道, 如红麻雄性不育、亚麻种子含油量和大麻大麻素相关候选基因等。再次, 麻类作物基因组测序完成为基于组学的麻类作物遗传改良提供可能: 有助于麻类作物种质资源形成和演化机制研究, 系统解析纤维产量、纤维品质、抗病耐逆等农艺性状形成的分子基础; 有助于建立高通量基因型-表型数据库, 挖掘优异基因资源与创制新种质; 有助于创新并集成分子标记辅助选择、基因组选择、转基因等技术, 建立高效的快速育种技术体系。宜选育高产高效、抗逆抗病、适宜轻简化机械化、优质专用的多用途麻类作物新品种, 以满足麻类作物相关产业的市场需求, 适应麻类作物生产方式。尽管已经获得重要基因以及位点的信息, 但如何高效率利用已有基因资源对麻类作物进行遗传改良仍需面临一系列挑战, 如成熟稳定的遗传转化体系、麻类作物基因编辑体系构建及基因组选择育种等。

关键词: 主要麻类作物, 基因组, 基因, 遗传改良

Abstract:

With the development of sequencing technology, main bast fiber crops (jute, kenaf, ramie, flax, and hemp) have completed genome sequencing from 2011 to 2020, which marks that the science of bast fiber crops has entered the era of genome. Firstly, this paper reviews the genome sequencing of bast fiber crops. Secondly, the important gene identification of bast fiber crops is also reported. Based on reference genome and transcriptome sequencing, a large number of candidate genes related to fiber development and response to abiotic stress have been detected, corresponding to the species characteristics of bast fiber and the adversity agriculture of “not competing with food”. Meanwhile, candidate genes for specific bast fiber crops have also been identified, such as male fertility in kenaf, seed oil content in flax, cannabinoid related candidate genes. Thirdly, the completion of bast fiber crop genome sequencing provides the possibility of omics-based genetic improvement, which will facilitate to study the formation of bast fiber and evolution mechanisms of bast fiber crop germplasms and systematically analyze the molecular basis for the formation of agronomic traits such as fiber yield, fiber quality, disease resistance, and stress tolerance. Also, it will facilitate to establish a high-throughput genotype-phenotype database, mine excellent gene resources, and create new germplasm. Moreover, it will facilitate to establish efficient rapid breeding technology systems by the innovation and combination of molecular marker-assisted selection, genome selection, transgenic technology and so on. To meet the market demand particularly bast fiber crop-related industries and adapt to the production model of bast fiber crops, we should breed new bast fiber crop varieties with high yield, high efficiency, stress resistance, disease resistance, suitable for light simplification and mechanization cultivation, high quality, and special purpose. Although the important information of gene resources and loci has been obtained from the reference genomes, there are still a series of challenges that how to utilize the existing resources efficiently for genetic improvement of bast fiber crops, such as stable and efficient genetic transformation system, construction of gene editing system, and genome selection breeding.

Key words: major bast fiber crops, genome, gene, genetic improvement

图1

主要麻类作物在世界上的收获面积、产量和价值 收获面积和产量取自2009年至2018年数据平均值, 价值取自2007年至2016年数据平均值, 数据均来自联合国粮食及农业组织。"

表1

主要麻类作物的基因组信息"

作物
Crop
测序技术
Sequencing technology
基因组大小 Genome size (Mb)
Families
染色体数目
Number of chromosomes
繁殖方式
Reproduction mode
文献
Reference
黄麻 Corchorus capsularis 圆果种 C. capsularis 二代测序 NGS 338 锦葵科 Malvaceae 2n=14 自花授粉 Self-pollination [6]
长果种 C. olitorius 445 常异花授粉 Often cross-pollination
圆果种 C. capsularis 三代测序 TGS 336 [7]
长果种 C. olitorius 361
红麻 Hibiscus cannabinus 二代+三代测序技术 NGS and TGS 1078 锦葵科 Malvaceae 2n=36 常异花授粉 Often cross-pollination [8]
苎麻 Boehmeria nivea 二代测序 NGS 342 荨麻科 Urticaceae 2n=28 无性繁殖 Asexual reproduction/异花授粉Cross-pollination [9]
二代测序 NGS 336 [10]
亚麻 Linum usitatissimum 二代测序 NGS 373 亚麻科 Linaceae 2n=30 自花授粉 Self-pollination [11]
二代测序 NGS 306,304,294 [12]
工业大麻 Cannabis sativa 二代测序 NGS 534 大麻科 Cannabinaceae 2n=20 异花授粉 Cross-pollination [13]
二代测序 NGS 808 [14]

附图1

基于叶绿体基因组序列的圆果种黄麻和长果种黄麻与锦葵科植物的系统发育关系"

附表1

主要麻类作物纤维发育候选基因信息"

基因
Gene
作物
Crop
功能或表型
Function or phenotype
文献
Reference
4CL 黄麻, 红麻 Jute, kenaf 参与木质素生物合成
Involved in lignin biosynthesis
[6, 8, 20]
4CL1 苎麻 Ramie 参与木质素生物合成
Involved in lignin biosynthesis
[47]
4CL3 苎麻 Ramie 参与黄酮类化合物的合成
Involved in the synthesis of flavonoids
[47]
APL 黄麻, 红麻 Jute, kenaf 参与纤维素生物合成
Involved in cellulose biosynthesis
[6, 8]
bHLH 亚麻 Flax 参与茎底部区域次生细胞壁沉积
Involved in the deposition of secondary cell wall at the bottom of stem
[66]
基因
Gene
作物
Crop
功能或表型
Function or phenotype
文献
Reference
bZIP 亚麻 Flax 参与茎底部区域次生细胞壁沉积
Involved in the deposition of secondary cell wall at the bottom of stem
[66]
C3H 红麻 Kenaf 参与木质素生物合成
Involved in lignin biosynthesis
[24]
C4H 红麻, 苎麻 Kenaf, ramie 参与木质素生物合成
Involved in lignin biosynthesis
[8, 47]
CAD 黄麻, 红麻, 苎麻
Jute, kenaf, ramie
参与纤维素生物合成
Involved in cellulose biosynthesis
[19, 24, 47]
CCR 黄麻, 红麻 Jute, kenaf 参与木质素生物合成
Involved in lignin biosynthesis
[6, 8, 20]
CCoAOMT 黄麻,红麻,苎麻
Jute, kenaf, ramie
参与木质素生物合成
Involved in lignin biosynthesis
[6, 24, 47]
CesA 亚麻 Flax 沉默后, 韧皮纤维的数量和结构受到了严重的影响
The quantity and structure of phloem fibers were seriously affected after silencing
[62-63]
CesA1 红麻, 苎麻 Kenaf, ramie 参与初生细胞壁的纤维素沉积
Involved in cellulose deposition of primary cell wall
[8, 42]
CesA2 苎麻 Ramie 参与木质素生物合成
Involved in lignin biosynthesis
[43]
CesA3 红麻, 苎麻 Kenaf, ramie 参与初生细胞壁的纤维素沉积
Involved in cellulose deposition of primary cell wall
[8, 43]
CesA4 黄麻, 红麻, 苎麻, 工业大麻
Jute, kenaf, ramie, hemp
参与次生细胞壁中纤维素沉积
Involved in cellulose deposition in secondary cell wall
[6, 8, 44, 80]
CesA6 红麻 Kenaf 参与初生细胞壁的纤维素沉积
Involved in cellulose deposition of primary cell wall
[8]
CesA7 黄麻, 红麻, 工业大麻
Jute, kenaf, hemp
协调木聚糖型S层的沉积
Coordinating the S-layers deposition in the xylan-type
[8, 19, 80]
CesA8 红麻, 工业大麻
Kenaf, hemp
参与次生细胞壁中纤维素沉积
Involved in cellulose deposition in secondary cell wall
[8, 80]
CML15b 亚麻 Flax PLR1基因转录调控的关键因子
Key factors for transcription regulation of PLR1 gene
[68]
COB 工业大麻 Hemp 在次级生长的下胚轴中有较高表达量
Highly expressed in hypocotyls undergoing secondary growth
[80]
COBL4 工业大麻 Hemp 在次级生长的下胚轴中有较高表达量
Highly expressed in hypocotyls undergoing secondary growth
[80]
COMT 黄麻, 红麻, 亚麻
Jute, kenaf, flax
参与木质素生物合成
Involved in lignin biosynthesis
[6, 8, 20, 24, 67]
CSL 黄麻, 红麻, 亚麻
Jute, kenaf, flax
参与纤维素生物合成
Involved in cellulose biosynthesis
[8, 17, 62]
F5H 红麻, 苎麻 Kenaf, ramie 参与木质素生物合成
Involved in lignin biosynthesis
[8, 24, 47]
FLA6 黄麻 Jute 协调木聚糖型S层的沉积
Coordinating the S-layers deposition in the xylan-type
[19]
FLA11 工业大麻 Hemp 影响植物细胞壁中纤维素、阿拉伯糖和半乳糖的含量
Impact cellulose, arabinose and galactose content in plant cell walls
[80, 82]
FLA12 工业大麻 Hemp 影响植物细胞壁中纤维素、阿拉伯糖和半乳糖的含量
Impact cellulose, arabinose and galactose content in plant cell walls
[80, 82]
G2-like 亚麻 Flax 参与茎底部区域次生细胞壁沉积
Involved in the deposition of secondary cell wall at the bottom of stem
[66]
GRAS 亚麻 Flax 分支数候选基因Candidate gene for the number of branches [112]
基因
Gene
作物
Crop
功能或表型
Function or phenotype
文献
Reference
HAT22 黄麻, 红麻 Jute, kenaf 参与纤维素生物合成
Involved in cellulose biosynthesis
[6, 8]
HB8 红麻 Kenaf 参与纤维形成 Involved in fiber formation [8]
HCA2 红麻 Kenaf 参与纤维形成 Involved in fiber formation [8]
HCT 红麻 Kenaf 参与木质素生物合成
Involved in lignin biosynthesis
[8, 24]
KANADI 红麻 Kenaf 参与纤维形成 Involved in fiber formation [8]
Kor 黄麻, 红麻 Jute, kenaf 参与纤维素生物合成
Involved in cellulose biosynthesis
[8, 17]
LBD1 红麻 Kenaf 参与纤维形成 Involved in fiber formation [8]
MP 红麻 Kenaf 参与纤维形成 Involved in fiber formation [8]
MYB 亚麻 Flax 参与茎底部区域次生细胞壁沉积
Involved in the deposition of secondary cell wall at the bottom of stem
[66]
MYB46 红麻, 苎麻, 亚麻, 工业大麻 Kenaf, ramie, flax, hemp 参与次生细胞壁生物发生和木聚糖生物合成
Involved in secondary cell wall biogenesis and xylan biosynthesis
[8, 12, 48, 80, 82]
MYB58 红麻 Kenaf 参与韧皮纤维的次生细胞壁合成
Involved in the secondary cell wall synthesis of phloem fibers
[8]
MYB83 黄麻, 红麻, 亚麻
Jute, kenaf, flax
参与纤维素生物合成
Involved in cellulose biosynthesis
[6, 8, 12]
MYB85 红麻 Kenaf 参与韧皮纤维的次生细胞壁合成
Involved in the secondary cell wall synthesis of phloem fibers
[8]
MYB103 红麻 Kenaf 参与韧皮纤维的次生细胞壁合成
Involved in the secondary cell wall synthesis of phloem fibers
[8]
NAC19 苎麻 Ramie 上调MYB46的表达
Up regulation of MYB46 expression
[48]
NAC24 苎麻 Ramie 上调MYB46的表达
Up regulation of MYB46 expression
[48]
NST1 工业大麻 Hemp 纤维分化的主要调节因子
Major regulator of fibre differentiation
[80-81]
PAL 红麻, 苎麻 Kenaf, ramie 参与木质素生物合成
Involved in lignin biosynthesis
[8, 47]
NST1 红麻 Kenaf 参与韧皮纤维的次生细胞壁合成
Involved in the secondary cell wall synthesis of phloem fibers
[8]
PHAC1 亚麻 Flax 表达量与纤维拉力强度成正比
The expression is proportional to the tensile strength of the fiber
[68]
PIN1 红麻 Kenaf 参与纤维形成 Involved in fiber formation [8]
PL 亚麻 Flax 株高候选基因 Candidate gene for plant height [112]
PLR1 亚麻 Flax 参与木质素生物合成
Involved in lignin biosynthesis
[68]
ROPGAP3 亚麻 Flax 参与韧皮纤维的次生细胞壁合成
Involved in the secondary cell wall synthesis of phloem fibers
[12]
SND1 红麻 Kenaf 参与韧皮纤维的次生细胞壁合成
Involved in the secondary cell wall synthesis of phloem fibers
[8]
SND2 红麻 Kenaf 参与韧皮纤维的次生细胞壁合成
Involved in the secondary cell wall synthesis of phloem fibers
[8]
SND3 红麻 Kenaf 参与韧皮纤维的次生细胞壁合成
Involved in the secondary cell wall synthesis of phloem fibers
[8]
Susy 黄麻, 红麻 Jute, kenaf 参与纤维素生物合成
Involved in cellulose biosynthesis
[8, 17]
基因
Gene
作物
Crop
功能或表型
Function or phenotype
文献
Reference
TDIF 红麻 Kenaf 参与纤维形成 Involved in fiber formation [8]
TOUCH4 工业大麻 Hemp 将木葡聚糖靶向于次生细胞壁S1层的初生-次生细胞壁交界
Participate in the targeting of xyloglucan to the primary- secondary cell wall junction in the secondary cell wall S1 layer
[80]
UGPase 黄麻 Jute 参与纤维素生物合成 Involved in cellulose biosynthesis [17]
UGT 亚麻 Flax 株高候选基因 Candidate gene for plant height [112]
WAT1 苎麻 Ramie 高纤维品种驯化中的受选择基因
Selection of highly domesticated fiber varieties
[45]
WLIM1 工业大麻 Hemp 捆绑肌动蛋白丝来促进纤维的延伸, 与PAL-box结合来促进木质素生物合成基因的木质化
Fibre extension by bundling the actin filament but also fibre lignification by promoting the lignin/lignin-like biosynthetic genes via binding to the PAL-box
[80, 83]
WOX4 黄麻, 红麻 Jute, kenaf 参与纤维素生物合成
Involved in cellulose biosynthesis
[6, 8]
WRKY 黄麻 Jute 纤维改良 Fiber improvement [20]
WRKY36 亚麻 Flax 通过与PLR1启动子中的W-box结合, 参与木质素生物合成
Involved in lignin biosynthesis by binding with W-box in PLR1 promoter
[69]
XTH 亚麻 Flax 分支数候选基因
Candidate gene for the number of branches
[112]
XTH5 工业大麻 Hemp 韧皮纤维的伸长依赖于XTH的活性
Bast fibre extension depends on the activities of XTH
[80]
XTH8 工业大麻 Hemp 韧皮纤维的伸长依赖于XTH的活性
Bast fibre extension depends on the activities of XTH
[80]
XTH15 工业大麻 Hemp 在二次生长的较老大麻下胚轴中表达较多
More expressed in the elongating hemp hypocotyl
[80]
XTH22 工业大麻 Hemp 在二次生长的较老大麻下胚轴中表达较多
More expressed in the elongating hemp hypocotyl
[80]

附表2

主要麻类作物响应非生物胁迫候选基因信息"

基因
Gene
作物
Crop
功能或表型
Function or phenotype
文献
Reference
α-amylase 苎麻 Ramie 响应干旱和高盐逆境胁迫
Response to drought and high salt stress
[53]
A-ARR 黄麻 Jute 通过细胞分裂素途径响应盐胁迫
Response to salt stress through cytokinin pathway
[21]
ABF 黄麻 Jute 通过ABA信号通路响应盐胁迫
Response to salt stress through the ABA signaling pathway
[21]
ACO1 苎麻 Ramie 响应干旱和高盐逆境胁迫
Response to drought and high salt stress
[51]
AHP 黄麻 Jute 通过细胞分裂素途径响应盐胁迫
Response to salt stress through cytokinin pathway
[21]
AP2/ERF 红麻 Kenaf 在盐胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt stress
[27]
AP2/EREBP 红麻 Kenaf 在盐胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt stress
[27]
ARF 红麻 Kenaf 在盐胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt stress
[27]
基因
Gene
作物
Crop
功能或表型
Function or phenotype
文献
Reference
AvrL2 亚麻 Flax 抵御锈病感染 Resist rust infection [76, 107]
AvrL567 亚麻 Flax 抵御锈病感染 Resist rust infection [76]
AvrM14 亚麻 Flax 抵御锈病感染 Resist rust infection [76, 107]
AvrP123 亚麻 Flax 抵御锈病感染 Resist rust infection [76]
AvrP4 亚麻 Flax 抵御锈病感染 Resist rust infection [76]
AvrM 亚麻 Flax 抵御锈病感染 Resist rust infection [76]
B-ARR 黄麻 Jute 通过细胞分裂素途径响应盐胁迫
Response to salt stress through cytokinin pathway
[21]
bHLH 红麻 Kenaf 在盐胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt stress
[27]
bZIP 红麻, 苎麻
Kenaf, ramie
响应干旱和高盐逆境胁迫
Response to drought and high salt stress
[27, 52]
CAX3 亚麻 Flax 基因产物可能通过Ca2+介导的胞内调节参与了亚麻对高酸性、高Al3+浓度的响应
Gene product may be involved in the response of flax to high acidity and high Al3+ concentration through Ca2+ mediated intracellular regulation
[73]
CCAAT 黄麻 Jute 在盐胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt stress
[21]
CRE1 黄麻 Jute 通过细胞分裂素途径响应盐胁迫
Response to salt stress through cytokinin pathway
[21]
G6PDH1 苎麻 Ramie 响应重金属镉胁迫 Response to cadmium stress [57]
GS2 苎麻 Ramie 转基因烟草能提高生物产量和氮利用效率
Transgenic tobacco can improve biomass and nitrogen utilization
[54]
HB 黄麻 Jute 在盐胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt stress
[21]
HDA2 红麻 Kenaf 盐胁迫和干旱胁迫的响应基因
Response genes of salt and drought stress
[30]
HDA8 红麻 Kenaf 盐胁迫和干旱胁迫的响应基因
Response genes of salt and drought stress
[30]
HDA9 红麻 Kenaf 盐胁迫和干旱胁迫的响应基因
Response genes of salt and drought stress
[30]
HDA19 红麻 Kenaf 盐胁迫和干旱胁迫的响应基因
Response genes of salt and drought stress
[30]
HHDA6 红麻 Kenaf 盐胁迫和干旱胁迫的响应基因
Response genes of salt and drought stress
[30]
HSF 黄麻 Jute 在盐胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt stress
[21]
HSF 亚麻 Flax 响应高温胁迫 Response to high temperature stress [70]
JAS 亚麻 Flax 响应土壤营养胁迫的响应 Response to soil nutrient stress [71]
KCS 黄麻 Jute 转基因增强了植株的抗旱性
Transgene enhances plant drought resistance
[23]
MADS-box 亚麻 Flax 参与调节植物生长发育和参与耐铝性细胞壁修饰的酶
Enzymes involved in the regulation of plant growth and development and in the modification of aluminum resistant cell wall
[74]
MYB 黄麻 Jute 在盐胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt stress
[21]
MYB83 苎麻 Ramie 响应重金属镉胁迫 Response to cadmium stress [56]
NAC 红麻 Kenaf 在盐胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt stress
[27]
基因
Gene
作物
Crop
功能或表型
Function or phenotype
文献
Reference
NAC 亚麻 Flax 参与调节植物生长发育和参与耐铝性细胞壁修饰的酶
Enzymes involved in the regulation of plant growth and development and in the modification of aluminum resistant cell wall
[74]
NRAMP1 苎麻 Ramie 响应重金属镉胁迫 Response to cadmium stress [58]
PCS1 苎麻 Ramie 响应重金属镉胁迫 Response to cadmium stress [55]
PP2C 黄麻 Jute 通过ABA信号通路响应盐胁迫
Response to salt stress through the ABA signaling pathway
[21]
PYL 黄麻 Jute 通过ABA信号通路响应盐胁迫
Response to salt stress through the ABA signaling pathway
[21]
RLK 黄麻 Jute 抗旱机制的负调控因子
Negative regulatory factors of drought resistance mechanism
[22]
SnRK2 黄麻 Jute 通过ABA信号通路响应盐胁迫
Response to salt stress through the ABA signaling pathway
[21]
SRT2 红麻 Kenaf 盐胁迫和干旱胁迫的响应基因
Response genes of salt and drought stress
[30]
TCP 红麻 Kenaf 在盐胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt stress
[27]
WD40-1 红麻 Kenaf ABA和MeJA信号转导途径、盐和干旱胁迫应答途径的关键枢纽基因
Key genes of ABA and MeJA signal transduction pathway, salt and drought stress response pathway
[28]
WRKY 黄麻, 红麻, 苎麻
Jute, kenaf, ramie
在盐胁迫和干旱胁迫转录组中检测到的差异表达因子
Differential expression factors detected in transcriptome under salt and drought stress
[21, 27, 29, 50]

附表3

主要麻类作物特异性状候选基因信息"

基因
Gene
作物
Crop
功能或表型
Function or phenotype
文献
Reference
LMI1 红麻 Kenaf 叶形基因 Leaf shape gene [8]
GI 红麻 Kenaf 参与红麻光周期调控 Involved in the photoperiod regulation of kenaf [26]
CO 红麻 Kenaf 参与红麻光周期调控 Involved in the photoperiod regulation of kenaf [26]
MADS-box 红麻 Kenaf 可能参与了红麻细胞质雄性不育
May be involved in the cytoplasmic male sterility of kenaf
[35]
TIR1 红麻 Kenaf 编码一个富含亮氨酸重复的F-box蛋白
Encodes a leucine rich F-box protein
[38-39]
atp9 红麻, 苎麻
Kenaf, ramie
细胞质雄性不育
Cytoplasmic male sterility
[32, 61]
atp6 红麻, 苎麻
Kenaf, ramie
细胞质雄性不育
Cytoplasmic male sterility
[35-37, 61]
ATPA 苎麻 Ramie 育性相关的基因 Fertility related genes [60]
PLA2 亚麻 Flax 参与甘油磷脂代谢途径和醚酯代谢途径
Involved in glycerophosphatidic and ether ester metabolic pathways
[77]
PLC 亚麻 Flax 参与甘油磷脂代谢和醚酯代谢和肌醇磷酸代谢
Involved in the metabolism of glycerophosphatide, ether ester and inositol phosphate
[77]
PDAT1 亚麻 Flax 参与TAG合成途径 Involved in TAG synthesis pathway [78]
DGAT1 亚麻 Flax 参与TAG合成途径 Involved in TAG synthesis pathway [78]
DGAT2 亚麻 Flax 参与TAG合成途径 Involved in TAG synthesis pathway [78]
FAD2a 亚麻 Flax 参与不饱和脂肪酸积累
Involved in the accumulation of unsaturated fatty acids
[79]
FAD3a 亚麻 Flax 参与不饱和脂肪酸积累
Involved in the accumulation of unsaturated fatty acids
[79]
基因
Gene
作物
Crop
功能或表型
Function or phenotype
文献
Reference
FAD3b 亚麻 Flax 参与不饱和脂肪酸积累
Involved in the accumulation of unsaturated fatty acids
[79]
PHO1 亚麻 Flax 千粒重候选基因Candidate gene for the 1000-seed weight [112]
AEE1 工业大麻 Hemp 参与调控大麻素合成途径
Involved in the regulation of cannabinoid synthesis pathway
[13]
OLS 工业大麻 Hemp 参与调控大麻素合成途径
Involved in the regulation of cannabinoid synthesis pathway
[13, 86]
THCAS-like1 工业大麻 Hemp 编码大麻素原酸形成 Encodes cannabinoid acid formation [13]
THCAS-like2 工业大麻 Hemp 编码大麻素原酸形成 Encodes cannabinoid acid formation [13]
THCAS-like3 工业大麻 Hemp 编码大麻素原酸形成 Encodes cannabinoid acid formation [13]
THCAS-like4 工业大麻 Hemp 编码大麻素原酸形成 Encodes cannabinoid acid formation [13]
CMK 工业大麻 Hemp 表达量和大麻素含量呈现显著正相关
The expression level was positively correlated with cannabinoid content
[86]
MDS 工业大麻 Hemp 表达量和大麻素含量呈现显著正相关
The expression level was positively correlated with cannabinoid content
[86]
HDS 工业大麻 Hemp 表达量和大麻素含量呈现显著正相关
The expression level was positively correlated with cannabinoid content
[86]
HDR 工业大麻 Hemp 表达量和大麻素含量呈现显著正相关
The expression level was positively correlated with cannabinoid content
[86]
GPP(lsu) 工业大麻 Hemp 表达量和大麻素含量呈现显著正相关
The expression level was positively correlated with cannabinoid content
[86]
PT 工业大麻 Hemp 在始果期苞片腺毛中对大麻素合成积累起着关键作用
Played key roles in the biosynthesis and accumulation of cannabinoids in the glandular hairs of bract at initial-fruiting stage
[86]
THCAS 工业大麻 Hemp 在始果期苞片腺毛中对大麻素合成积累起着关键作用
Played key roles in the biosynthesis and accumulation of cannabinoids in the glandular hairs of bract at initial-fruiting stage
[86]
TPS18VF 工业大麻 Hemp 编码橙花醇/芳樟醇合成酶 Nerolidol/linalool synthases [87]
TPS19BL 工业大麻 Hemp 编码橙花醇/芳樟醇合成酶 Nerolidol/linalool synthases [87]
TPS16CC 工业大麻 Hemp 编码大根香叶烯B合酶 Germacrene B synthase [87]
TPS20CT 工业大麻 Hemp 编码四甲基环癸二烯甲醇合酶 Hedycaryol synthase [87]
[1] 熊和平. 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008. pp 5-8.
Xiong H P. Breeding Sciences of Bast and Leaf Fiber Crops. Beijing: China Agricultural Science and Technology Press, 2008. pp 5-8(in Chinese).
[2] Zhang L L, Wang J, Wan X B, Xu Y, Zhang L M, Fang P P, Qi J M, Zhang L W. Analysis of internal transcribed spacers (ITS) sequences and phylogenetics of main bast fiber crops. Acta Agron Sin, 2017,43:862.
[3] 贾继增, 高丽锋, 赵光耀, 周文斌, 张卫健. 作物基因组学与作物科学革命. 中国农业科学, 2015,48:3316-3332.
Jia J Z, Gao L F, Zhao G Y, Zhou W B, Zhang W J. Crop genomics and crop science revolutions. Sci Agric Sin, 2015,48:3316-3332 (in Chinese with English abstract).
[4] Initiative T A G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000,408:796-815.
[5] Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W, Chen L, Cooper B, Park S, Wood T C, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002,296:92-100.
pmid: 11935018
[6] Islam M S, Saito J A, Emdad E M, Ahmed B, Islam M M, Halim A, Hossen Q M, Hossain M Z, Ahmed R, Hossain M S, Kabir S M, Khan M S, Khan M M, Hasan R, Aktar N, Honi U, Islam R, Rashid M M, Wan X, Hou S, Haque T, Azam M S, Moosa M M, Elias S M, Hasan A M, Mahmood N, Shafiuddin M, Shahid S, Shommu N S, Jahan S, Roy S, Chowdhury A, Akhand A I, Nisho G M, Uddin K S, Rabeya T, Hoque S M, Snigdha A R, Mortoza S, Matin S A, Islam M K, Lashkar M Z, Zaman M, Yuryev A, Uddin M K, Rahman M S, Haque M S, Alam M M, Khan H, Alam M. Comparative genomics of two jute species and insight into fibre biogenesis. Nat Plants, 2017,3:16223.
[7] 张立武. 基于染色体级别参考基因组和重测序的黄麻重要性状GWAS分析. 见: 2018全国植物生物学大会论文集. 山东泰安, 2018. p 96.
Zhang L W. GWAS analysis of jute important traits based on chromosome-level reference genome and resequencing. In: Proceedings of 2018 National Congress of Plant Biology. Tai’an, Shandong, China, 2018. p 96 (in Chinese )
[8] Zhang L W, Xu Y, Zhang X T, Ma X K, Zhang L L, Liao Z Y, Zhang Q, Wan X B, Cheng Y, Zhang J S, Li D X, Zhang L M, Xu J T, Tao A F, Lin L H, Fang P P, Chen S, Qi R, Xu X M, Qi J, Ming R. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fibre and leaf shape biogenesis. Plant Biotechnol J, 2020,18:1796-1809.
[9] Liu C, Zeng L B, Zhu S Y, Wu L Q, Wang Y Z, Tang S W, Wang H W, Zheng X, Zhao J, Chen X R, Dai Q Z, Liu T M. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud). DNA Res, 2018,25:173-181.
[10] Luan M B, Jian J B, Chen P, Chen J H, Chen J H, Gao Q, Gao G, Zhou J H, Chen K M, Guang X M, Chen J K, Zhang Q Q, Wang X F, Fang L, Sun Z M, Bai M Z, Fang X D, Zhao S C, Xiong H P, Yu C M, Zhu A G. Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich. Mol Ecol Resour, 2018,18:639-645.
[11] Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith D W, Grassa C J, Geraldes A, Cronk Q C, Cullis C, Dash P K, Kumar P A, Cloutier S, Sharpe A G, Wong G K, Wang J, Deyholos M K. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J, 2012,72:461-473.
doi: 10.1111/j.1365-313X.2012.05093.x pmid: 22757964
[12] Zhang J P, Qi Y N, Wang L M, Wang L L, Yan X C, Dang Z, Li W J, Zhao W, Pei X W, Li X M, Liu M, Tan M L, Wang L, Long Y, Wang J, Zhang X W, Dang Z H, Zheng H K, Liu T M. Genomic comparison and population diversity analysis provide insights into the domestication and improvement of flax. Science, 2020,23:100967.
[13] Bakel H V, Stout J M, Cote A G, Tallon C M, Sharpe A G, Hughes T R, Page J E. The draft genome and transcriptome of Cannabis sativa. Genome Biol, 2011,12:R102.
[14] Gao S, Wang B, Xie S, Xu X, Zhang J, Pei L, Yu Y, Yang W, Zhang Y. A high-quality reference genome of wild Cannabis sativa. Hortic Res, 2020,7:73.
[15] Fang S S, Zhang L M, Qi J M, Zhang L W. De novo assembly of chloroplast genomes of Corchorus capsularis and C. olitorius yields species-specific InDel markers. Crop J, 2020.
[16] Cheng Y, Zhang L M, Qi J M, Zhang L W. Complete chloroplast genome sequence of Hibiscus cannabinus and comparative analysis of the Malvaceae family. Front Genetics, 2020,11:227.
[17] Zhang L W, Ming R, Zhang J S, Tao A F, Fang P P, Qi J M. De novo transcriptome sequence and identification of major bast-related genes involved in cellulose biosynthesis in jute (Corchorus capsularis L.). BMC Genomics, 2015,16:1062.
pmid: 26666317
[18] Yang Z M, Wu Y P, Dai Z G, Chen X J, Wang H Q, Yang S, Xie D W, Tang Q, Cheng C H, Xu Y, Deng C H, Liu C, Chen J Q, Su J G. Comprehensive transcriptome analysis and tissue-specific profiling of gene expression in jute (Corchorus olitorius L.). Ind Crops Prod, 2020,146:112101.
[19] Chakraborty A, Sarkar D, Satya P, Karmakar P G, Singh N K. Pathways associated with lignin biosynthesis in lignomaniac jute fibres. Mol Genet Genomics. 2015,290:1523-1542.
doi: 10.1007/s00438-015-1013-y pmid: 25724692
[20] Samanta P, Sadhukhan S, Basu A. Identification of differentially expressed transcripts associated with bast fibre development in Corchorus capsularis by suppression subtractive hybridization. Planta, 2014,241:371-385.
[21] Yang Z M, Yan A, Lu R K, Dai Z G, Tang Q, Cheng C H, Xu Y, Su J G. De novo transcriptome sequencing of two cultivated jute species under salinity stress. PLoS One, 2017,12:e0185863.
[22] Yang Z M, Dai Z G, Lu R K, Wu B B, Tang Q, Xu Y, Cheng C H, Su J G. Transcriptome analysis of two species of jute in response to polyethylene glycol (PEG)- induced drought stress. Sci Rep, 2017,7:16565.
pmid: 29185475
[23] Zhang G Y, Shan S L, Wu Y B, Huang S Q, Li D F, Deng J L, Qi J M. The KCS gene is involved in the formation of chloroplast stromules and other physiological processes in jute (Corchorus capsularis L.). Ind Crops Prod, 2019,141:111781.
[24] Zhang L W, Wan X B, Xu J T, Lin L H, Qi J M. De novo assembly of kenaf (Hibiscus cannabinus) transcriptome using Illumina sequencing for gene discovery and marker identification. Mol Breed, 2015,35:192.
[25] Ryu J, Kwon S J, Sung S Y, Kim W J, Kim D S, Ahn J W, Kim J B, Kim S H, Ha B K, Kang S Y. Molecular cloning, characterization, and expression analysis of lignin biosynthesis genes from kenaf (Hibiscus cannabinus L.). Genes Genomics, 2015,38:59-67.
[26] 黄枝妙. 红麻成花光周期调控相关基因HcCOL4HcGI的克隆与表达. 福建农林大学硕士学位论文, 福建福州, 2014.
Huang Z M. Cloning and Expression Analysis of Photoperiodic Flowering Related Genes HcCOL4 and HcGI in Kenaf. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian,China, 2014 (in Chinese with English abstract).
[27] Li H, Li D F, Chen A G, Tang H J, Li J J, Huang S Q. RNA-seq for comparative transcript profiling of kenaf under salinity stress. J Plant Res, 2016,130:365-372.
pmid: 27999968
[28] 李辉, 李德芳, 陈安国, 唐慧娟, 李建军, 黄思齐. 盐和干旱胁迫下红麻HcWD40-1基因的克隆及表达特征. 农业生物技术学报, 2017,25:1970-1978.
Li H, Li D F, Chen A G, Tang H J, Li J J, Huang S Q. Cloning and expression characteristics of HcWD40- 1 gene under salt and drought stress in kenaf (Hibiscus cannabinus). J Agric Biotechnol, 2017,25:1970-1978 (in Chinese with English abstract).
[29] 潘根, 赵立宁, 陈安国, 李建军, 黄思齐, 唐慧娟, 常丽, 邓勇, 李德芳. 红麻HcWRKY20基因的克隆与表达特征分析. 中国麻业科学, 2018,40(4):145-150.
Pan G, Zhao L N, Chen A G, Li J J, Huang S Q, Tang H J, Chang L, Deng Y, Li D F. Cloning and expression analysis of a WRKY transcript factor HcWRKY20 in kenaf. Plant Fiber Sci China, 2018,40(4):145-150 (in Chinese with English abstract).
[30] Wei F, Tang D, Li Z, Kashif M H, Khan A, Lu H, Jia R, Chen P. Molecular cloning and subcellular localization of six HDACs and their roles in response to salt and drought stress in kenaf Hibiscus cannabinus L.). Biol Res, 2019,52:20.
pmid: 30954076
[31] 周瑞阳, 张新, 张加强, 甘正华, 韦汉西. 红麻细胞质雄性不育系的选育及杂种优势利用取得突破. 中国农业科学, 2008,41:314.
Zhou R Y, Zhang X, Zhang J Q, Gan Z H, Wei H X. A Breakthrough in kenaf cytoplasmic male sterile lines breeding and heterosis utilization. Sci Agric Sin, 2008,41:314 (in Chinese with English abstract).
[32] Zhao Y H, Chen P, Liao X F, Zhou B J, Liao J, Huang Z P, Kong X J, Zhou R Y. A comparative study of the atp9 gene between a cytoplasmic male sterile line and its maintainer line and further development of a molecular marker specific for male sterile cytoplasm in kenaf (Hibiscus cannabinus L.) Mol Breed 2013,32:969-976.
[33] Zhao Y H, Liao X F, Huang Z P, Chen P, Zhou B J, Liu D M, Kong X J, Zhou R Y. Expression of kenaf mitochondrial chimeric genes HM184 causes male sterility in transgenic tobacco plants. Mitochondrial DNA, 2014,26:495-500.
[34] 赵艳红, 廖小芳, 赵洪涛, 黄其椿, 唐兴富, 李初英, 周瑞阳. 红麻线粒体基因atp9克隆及不育细胞质分子标签的利用. 南方农业学报, 2015,46:964-970.
Zhao Y H, Liao X F, Zhao H T, Huang Q C, Tang X F, Li C Y, Zhou R Y. Cloning mitochondrial gene atp9 and utilization molecular marker associated with male sterile cytoplasm in kenaf. J Southern Agric, 2015,46:964-970 (in Chinese with English abstract).
[35] Chen P, Ran S M, Li R, Huang Z P, Qian J H, Yu M L, Zhou R Y. Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Mol Breed, 2014,34:1879-1891.
[36] Zhao Y H, Liao X F, Zhou B J, Zhao H T, Zhou Y Y, Zhou R Y. hou R Y. Mutation in the coding sequence of atp6 are associated with male sterile cytoplasm in kenaf (Hibiscus cannabinus L.) Euphytica, 2015,207:169-175.
[37] 彭双双. 红麻UG93A雄性不育相关基因atp6互作蛋白的鉴定与验证. 广西大学硕士学位论文,广西南宁, 2019.
Peng S S. Identification and Validation of ATP6 Interacton Protein of UG93A Male Eterility Related Gene in Kenaf MS Thesis of Guangxi University, Nanning, Guangxi, China,, 2019 (in Chinese with English abstract).
[38] 吴丹, 唐冬英, 李新梅, 李丽, 赵小英, 刘选明. F-box蛋白在植物生长发育中的功能研究进展. 生命科学研究, 2015,19:362-367.
Wu D, Tang D Y, Li X M, Li L, Zhao X Y, Liu X M. Progresses on F-box protein function in plant growth and development. Life Sci Res, 2015,19:362-367 (in Chinese with English abstract).
[39] 陈励虹, 周步进, 周瑞阳. 红麻TIR1基因克隆及其表达载体构建. 南方农业学报, 2017,48:1343-1350.
Chen L H, Zhou B J, Zhou R Y. Cloning of TIRI gene in Hibiscus cannabinus L. and construction of its expression vector. J Southern Agric, 2017,48:1343-1350 (in Chinese with English abstract).
[40] Tang D, Wei F, Kashif M H, Munsif F, Zhou R. Identification and analysis of RNA editing sites in chloroplast transcripts of kenaf (Hibiscus cannabinus L.). 3 Biotechnol, 2019,9:361.
[41] Liu T M, Zhu S Y, Tang Q M, Chen P, Yu Y T, Tang S W. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud) BMC Genomics, 2013,14:125.
[42] 蒋杰, 揭雨成, 周清明, 周精华, 朱守晶, 邢虎成, 钟英丽. 苎麻纤维素合酶基因BnCesA1全长cDNA的克隆与表达分析. 植物遗传资源学报, 2012,13:851-857.
Jiang J, Jie Y C, Zhou Q M, Zhou J H, Zhu S J, Xing H C, Zhong Y L. Full-length cDNA cloning and express analysis of BnCesA1 in ramie. J Plant Genet Resour, 2012,13:851-857 (in Chinese with English abstract).
[43] 刘昱翔, 陈建荣, 彭彦, 黄妤, 赵燕, 黄丽华, 郭清泉, 张学文. 两种苎麻纤维素合酶基因cDNA序列的克隆及表达. 作物学报, 2014,40:1925-1935.
Liu Y X, Chen J R, Peng Y, Huang Y, Zhao Y, Huang L H, Guo Q Q. Zhang X W. cDNA cloning and expression of two cellulose synthase genes from Boehmeria nivea. Acta Agron Sin, 2014,40:1925-1935 (in Chinese with English abstract).
[44] 刘昱翔, 陈建荣, 彭彦, 黄妤, 赵燕, 黄丽华, 郭清泉, 张学文. 苎麻纤维素合成酶基因BnCesA4 cDNA序列的克隆与表达分析. 作物研究, 2014,28:472-478.
Liu Y X, Chen J R, Peng Y, Huang Y, Zhao Y, Huang L H, Guo Q Q, Zhang X W. The cDNA cloning and expression analysis on cellulose synthase BnCesA4 in Boehmeria nivea. Crop Res, 2014,28:472-478 (in Chinese with English abstract).
[45] Liu T M, Tang S W, Zhu S Y, Tang Q M, Zheng X. Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud). Plant Mol Biol, 2014,86:85-92.
doi: 10.1007/s11103-014-0214-9 pmid: 24934879
[46] Chen J R, Rao J, Wang Y Z, Zeng Z, Liu F, Tang Y H, Chen X R, Liu C, Liu T M. Integration of quantitative trait loci mapping and expression profiling analysis to identify genes potentially involved in ramie fiber lignin biosynthesis. Genes, 2019,10:842.
[47] Tang Y H, Liu F, Xing H C, Mao K Q, Chen G, Guo Q Q, Chen J R. Correlation Analysis of lignin accumulation and expression of key genes involved in lignin biosynthesis of ramie (Boehmeria nivea). Genes, 2019,10:389.
[48] 李富. 苎麻BnNAC19,BnNAC24BnMYB46基因的克隆及功能研究. 吉首大学硕士学位论文, 湖南湘西, 2019.
Li F. Cloning and Functional Characterization of BnNAC19, BnNAC24 and BnMYB46 Genes in ramie. MS Thesis of Jishou University, Xiangxi, Hunan,China, 2019 (in Chinese with English abstract).
[49] Xie J, Li J, Jie Y, Xie D, Yang D, Shi H, Zhong Y. Comparative transcriptomics of stem bark reveals genes associated with bast fiber development in Boehmeria nivea L. gaud (ramie). BMC Genomics, 2020,21:40.
pmid: 31931705
[50] 付莉莉, 刘头明, 朱四元, 汤清明, 唐守伟. 苎麻WRKY转录因子的序列分析. 中国麻业科学, 2013,35(3):113-117.
Fu L L, Liu T M, Zhu S Y, Tang Q M, Tang S W. Sequence analysis of WRKY transcription factor in ramie. Plant Fiber Sci China, 2013,35(3):113-117 (in Chinese with English abstract).
[51] 薛丽君, 周精华, 邢虎成. 苎麻ACC氧化酶基因(BnACO1)的克隆及表达. 中国农业科学, 2013,46:2377-2385.
Xue L J, Zhou J H, Xing H C. Cloning and characterization of ACC oxidase gene (BnACO1) from ramie (Boehmeria nivea) Sci Agric Sin, 2013,46:2377-2385 (in Chinese with English abstract).
[52] 周精华, 揭雨成, 邢虎成, 钟英丽, 余伟林. 苎麻BnbZIP1转录因子基因的克隆与表达特征分析. 中国农业科学, 2013,46:1314-1322.
Zhou J H, Jie Y C, Xing H C, Zhong Y L, Yu W L. Cloning and characterization of the BnbZIP1 transcription factor gene from ramie (Boehmeria nivea L.) Sci Agric Sin, 2013,46:1314-1322 (in Chinese with English abstract).
[53] 余伟林, 钟英丽, 揭雨成, 周清明, 周精华, 朱守晶. 苎麻α-amylase基因的克隆与表达. 农业生物技术学报, 2014,22:27-36.
Yu W L, Zhong Y L, Jie Y C, Zhou Q M, Zhou J H, Zhu S J. Molecular cloning and characterization of Bn-a-amylase gene from ramie (Boehmeria nivea). J Agric Biotechnol, 2014,22:27-36 (in Chinese with English abstract).
[54] 郑建树, 喻春明, 陈平, 王延周, 谭龙涛, 陈继康, 朱涛涛, 卢凌霄, 朱娟娟, 段叶辉, 熊和平. 苎麻谷氨酰胺合成酶BnGS2等位基因的克隆及其转基因烟草特性. 中国农业科学, 2014,47:3348-3358.
Zheng J S, Yu C M, Chen P, Wang Y Z, Tan L T, Chen J K, Zhu T T, Lu L X, Zhu J J, Duan Y H, Xiong H P. Cloning of glutamine synthetase BnGS2 allele genes from ramie (Boehmeria nivea L.) and study on gene-transforming tobacco. Sci Agric Sin, 2014,47:3348-3358 (in Chinese with English abstract).
[55] 朱守晶, 石朝艳, 余伟林, 周精华, 揭雨成. 苎麻植物螯合肽合成酶BnPCS1基因的克隆和表达特性分析. 植物遗传资源学报, 2014,15:582-588.
Zhu S J, Shi C Y, Yu W L, Zhou J H, Jie Y C. Cloning and characterization of the BnPCSI gene from ramie (Boehmeria nivea L.) J Plant Genet Resour, 2014,15:582-588 (in Chinese with English abstract).
[56] 朱守晶, 史文娟. 苎麻转录因子基因BnMYB3的克隆及表达分析. 西北植物学报, 2019,39:422-429.
Zhu S J, Shi W J. Cloning and expression pattern analysis of BnMYB3 transcription factor gene in ramie. Acta Bot Boreali-Occident Sin, 2019,39:422-429 (in Chinese with English abstract).
[57] 朱守晶, 史文娟. 苎麻镉响应基因BnG6PDH1的克隆和表达分析. 江苏农业学报, 2019,35(2):262-270.
Zhu S J, Shi W J. Cloning and expression analysis of cadmium-responsive gene BnG6PDH1 from ramie (Boehmeria nivea L.) Jiangsu J Agric Sci, 2019,35(2):262-270 (in Chinese with English abstract).
[58] 尹伟丹, 马玉申, 汪娅梅, 揭雨成, 邢虎成. 苎麻BnNRAMP1基因的克隆与表达特异性分析. 分子植物育种, 2019,18(19):6298-6304.
Yin W D, Ma Y S, Wang Y M, Jie Y C, Xing H C. Cloning and expression specificity analysis of BnNRAMP1 gene in ramie Mol Plant Breed, 2019,18(19):6298-6304. (in Chinese with English abstract).
[59] Chen K, Yu Y, Sun K, Xiong H, Yu C, Chen P, Chen J, Gao G, Zhu A. The miRNAome of ramie (Boehmeria nivea L.): identification, expression, and potential roles of novel microRNAs in regulation of cadmium stress response BMC Plant Biol, 2018,18:369.
doi: 10.1186/s12870-018-1561-5 pmid: 30577815
[60] 段继强, 李建永, 杜光辉, 梁雪妮, 刘飞虎. 苎麻线粒体基因CoxⅡatpA与细胞质雄性不育相关性分析. 中国农业科学, 2009,42:434-445.
Duan J Q, Li J Y, Du G H, Liang X N, Liu F H. Relationship of mitochondrial genes Cox II and atpA with cytoplasmic male sterility in ramie. Sci Agric Sin, 2009,42:434-445 (in Chinese with English abstract).
[61] Liu L X, Zhang S W, Duan J Q, Du G H, Liu F H. Mitochondrial genes atp6 and atp9 cloned and characterized from ramie (Boehmeria nivea (L.) Gaud.) and their relationship with cytoplasmic male sterility Mol Breed 2011,30:23-32.
[62] Pydiura N A, Bayer G Y, Galinousky D V, Yemets A I, Pirko Y V, Padvitski T A, Anisimova N V, Khotyleva L V, Kilchevsky A V, Blume Y B. Bioinformatic search for cellulose synthase genes in flax (Linum usitatissimum) and their phylogenetic analysis. Cytol Genet, 2015,49:279-287.
[63] Chantreau M, Chabbert B, Billiard S, Hawkins S, Neutelings G. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. Plant Biotechnol J, 2015,13:1312-1324.
[64] 袁红梅, 郭文栋, 赵丽娟, 于莹, 吴建忠, 张利国, 程莉莉, 赵东升, 吴广文, 关凤芝. 亚麻纤维素合酶超基因家族的生物信息学及表达分析. 中国农业科学, 2016,49:4656-4668.
Yuan H M, Guo W D, Zhao L J, Yu Y, Wu J Z, Zhang L G, Cheng L L, Zhao D S, Wu G W, Guan F Z. Bioinformatics and expression analysis of the cellulose synthase supergene family in flax. Sci Agric Sin, 2016,49:4656-4668 (in Chinese with English abstract).
[65] Galinousky D, Padvitski T, Bayer G, Pirko Y, Pydiura N, Anisimova N, Nikitinskaya T, Khotyleva L, Yemets A, Kilchevsky A, Blume Y. Expression analysis of cellulose synthase and main cytoskeletal protein genes in flax (Linum usitatissimum L.). Cell Biol Int, 2017,43:1065-1071.
[66] Gorshkov O, Mokshina N, Gorshkov V, Chemikosova S, Gogolev Y, Gorshkova T. Transcriptome portrait of cellulose-enriched flax fibres at advanced stage of specialization. Plant Mol Biol, 2016,93:431-449.
doi: 10.1007/s11103-016-0571-7 pmid: 27981388
[67] 黄文功, 康庆华, 姜卫东, 姚玉波, 詹亚光. 木质素合成酶基因反义COMT对亚麻的转化及检测. 中国麻业科学, 2016,38(2):54-57.
Huang W G, Kang Q H, Jiang W D, Yao Y B, Zhan Y G. Transformation and detection of Linum usitatissimum with COMT gene. Plant Fiber Sci China, 2016,38(2):54-57 (in Chinese with English abstract).
[68] Wróbel-Kwiatkowska M, Kropiwnicki M, Żebrowski J, Beopoulos A, Dymińska L, Hanuza J, Rymowicz W. Effect of mcl-PHA synthesis in flax on plant mechanical properties and cell wall composition. Transgenic Res, 2018,28:77-90.
pmid: 30484148
[69] Markulin L, Corbin C, Renouard S, Drouet S, Durpoix C, Mathieu C, Lopez T, Auguin D, Hano C, Laine E. Characterization of LuWRKY36, a flax transcription factor promoting secoisolariciresinol biosynthesis in response to Fusarium oxysporum elicitors in Linum usitatissimum L. hairy roots. Planta, 2019,250:347-366.
doi: 10.1007/s00425-019-03172-9 pmid: 31037486
[70] 谢冬微, 路颖, 赵德宝, 杨学, 粟建光, 孙健. 亚麻NBS类抗病基因家族全基因组分析. 中国麻业科学, 2015,37(3):113-119.
Xie D W, Lu Y, Zhao D B, Yang X, Su J G, Sun J. Genome - wide Analysis of NBS resistance genes in flax. Plant Fiber Sci China, 2015,37(3):113-119 (in Chinese with English abstract).
[71] Saha D, Mukherjee P, Dutta S, Meena K, Sarkar S K, Mandal A B, Dasgupta T, Mitra J. Genomic insights into HSFs as candidate genes for high-temperature stress adaptation and gene editing with minimal off-target effects in flax. Sci Rep, 2019,9:5581.
doi: 10.1038/s41598-019-41936-1 pmid: 30944362
[72] Dmitriev A A, Kudryavtseva A V, Krasnov G S, Koroban N V, Speranskaya A S, Krinitsina A A, Belenikin M S, Snezhkina A V, Sadritdinova A F, Kishlyan N V, Rozhmina T A, Yurkevich O Y, Muravenko O V, Bolsheva N L, Melnikova N V. Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress. BMC Plant Biol, 2016,16:237.
pmid: 28105944
[73] Zyablitsin A V, Dmitriev A A, Krasnov G S, Bolsheva N L, Rozhmina T A, Muravenko O V, Fedorova M S, Snezhkina A V, Kudryavtseva A V, Melnikova N V. CAX3 gene is involved in flax response to high soil acidity and aluminum exposure. Mol Biol, 2018,52:514-519.
[74] Krasnov G S, Dmitriev A A, Zyablitsin A V, Rozhmina T A, Zhuchenko A A, Kezimana P, Snezhkina A V, Fedorova M S, Novakovskiy R O, Pushkova E N, Povkhova L V, Bolsheva N L, Kudryavtseva A V, Melnikova N V. Aluminum responsive genes in flax (Linum usitatissimum L.). BioMed Res Int, 2019,2019:1-11.
[75] Soto-Cerda B J, Cloutier S, Gajardo H A, Aravena G, Quian R. Identifying drought-resilient flax genotypes and related-candidate genes based on stress indices, root traits and selective sweep. Euphytica, 2019,215.
doi: 10.1007/s10681-019-2449-7 pmid: 33364632
[76] Wu W, Nemri A, Blackman L M, Catanzariti A M, Sperschneider J, Lawrence G J, Dodds P N, Jones D A, Hardham A R. Flax rust infection transcriptomics reveals a transcriptional profile that may be indicative for rust Avr genes. PLoS One, 2019,14:e0226106.
doi: 10.1371/journal.pone.0226106 pmid: 31830116
[77] 李晓薇, 戢舒涵, 赵旭, 张百兵, 王法微, 李海燕. 亚麻芥未成熟胚中磷脂酶基因家族的转录组学分析. 中国油料作物学报, 2018,40:793-800.
Li X W, Ji S H, Zhao X, Zhang B B, Wang F W, Li H Y. Transcriptome analysis of phospholipase gene family in immature embryo of Camelina sativa. Chin J Oil Crop Sci, 2018,40:793-800 (in Chinese with English abstract).
[78] 李闻娟, 齐燕妮, 王利民, 党照, 赵利, 赵玮, 谢亚萍, 王斌, 张建平, 李淑洁. 不同胡麻品种TAG合成途径关键基因表达与含油量、脂肪酸组分的相关性分析. 草业学报, 2019,28(1):138-149.
Li W J, Qi Y N, Wang L M, Dang Z, Zhao L, Zhao W, Xie Y P, Wang B, Zhang J P, Li S J. Correlation between oil content or fatty acid composition and expression levels of genes involved in TAG biosynthesis in flax. Acta Pratac Sin, 2019,28(1):138-149 (in Chinese with English abstract).
[79] Xie D, Dai Z, Yang Z, Tang Q, Deng C, Xu Y, Wang J, Chen J, Zhao D, Zhang S, Zhang S, Su J. Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism. Plant Sci, 2019,286:98-107.
doi: 10.1016/j.plantsci.2019.06.004 pmid: 31300147
[80] Behr M, Legay S, Žižková E, Motyka V, Dobrev P I, Hausman J F, Lutts S, Guerriero G. Studying secondary growth and bast fiber development: The Hemp Hypocotyl Peeks behind the Wall. Front Plant Sci, 2016,7:1733.
doi: 10.3389/fpls.2016.01733 pmid: 27917184
[81] Zhong R, Ye Z H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol, 2015,56:195-214.
pmid: 25294860
[82] Zhong R, Lee C, Zhou J, McCarthy R L, Ye Z H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell, 2008,20:2763-2782.
[83] Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant cell, 2013,25:4421-4438.
doi: 10.1105/tpc.113.116970 pmid: 24220634
[84] MacMillan C P, Taylor L, Bi Y, Southerton S G, Evans R, Spokevicius A. The fasciclin-like arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics. New Phytol, 2015,206:1314-1327.
doi: 10.1111/nph.13320 pmid: 25676073
[85] Alexander S P H. Therapeutic potential of cannabis-related drugs. Prog Neuro Psychopharmacol Biol Psych, 2016,64:157-166.
[86] 陈璇, 张庆滢, 郭蓉, 郭孟璧, 许艳萍, 杨明, 郭鸿彦. 不同发育时期大麻素合成相关酶基因表达特征与大麻素含量的相关分析. 分子植物育种, 2018,16:583-590.
Chen X, Zhang Q Y, Guo R, Guo M B, Xu Y P, Yang M, Guo H Y. Correlation analysis between gene expression characteristics of related enzymes in cannabinoids biosynthesis and cannabinoids content at different developmental stages of Cannabis sativa L. Mol Plant Breed, 2018,16:583-590 (in Chinese with English abstract).
[87] Zager J J, Lange I, Srividya N, Smith A, Lange B M. Gene networks underlying cannabinoid and terpenoid accumulation in Cannabis. Plant Physiol, 2019,180:1877-1897.
pmid: 31138625
[88] Duraisamy G S, Mishra A K, Kocábek T, Matoušek J. Activation of polyketide synthase gene promoter in Cannabis sativa by heterologous transcription factors derived from Humulus lupulus. Biol Plant, 2018,62:250-260.
[89] Laverty K U, Stout J M, Sullivan M J, Shah H, Gill N, Holbrook L, Deikus G, Sebra R, Hughes T R, Page J E., Bakel H V. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res, 2019,29:146-156.
doi: 10.1101/gr.242594.118 pmid: 30409771
[90] Prentout D, Razumova O, Rhoné B, Badouin H, Henri H, Feng C, Käfer J, Karlov G, Marais G A B. An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Res, 2020,30:164-172.
doi: 10.1101/gr.251207.119 pmid: 32033943
[91] 陆朝福, 朱立煌. 植物育种中的分子标记辅助选择. 生物工程进展, 1995,15(4):11-17.
Lu C F, Zhu L H. Molecular marker assisted selection in plant breeding. Prog Biotechnol, 1995,15(4):11-17 (in Chinese).
[92] 王斌, 赵利, 赵玮. 8个地方野生亚麻资源发掘及遗传多样性分析. 分子植物育种, 2018,17:3755-3760.
Wang B, Zhao L, Zhao W. Exploration and genetic diversity analysis of 8 local wild flax germplasm resources. Mol Plant Breed, 2018,17:3755-3760 (in Chinese with English abstract).
[93] Soorni A, Fatahi R, Haak D C, Salami S A, Bombarely A. Assessment of genetic diversity and population structure in iranian Cannabis germplasm. Sci Rep, 2017,7:15668.
doi: 10.1038/s41598-017-15816-5 pmid: 29142201
[94] Biswas C, Dey P, Karmakar P G, Satpathy S. Discovery of large-scale SNP markers and construction of linkage map in a RIL population of jute (Corchorus capsularis). Mol Breed, 2015,35:119.
[95] Yang Z M, Yang Y X, Dai Z G, Xie D W, Tang Q, Cheng C H, Xu Y, Liu C, Deng C H, Chen J Q, Su J G. Construction of a high-resolution genetic map and identification of quantitative trait loci for salt tolerance in jute (Corchous spp.). BMC Plant Biol, 2019,19.
doi: 10.1186/s12870-019-2205-0 pmid: 31878891
[96] Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001,157:1819-1829.
pmid: 11290733
[97] Morrell P L, Buckler E S, Ross-Ibarra J. Crop genomics: advances and applications. Nat Rev Genet, 2011,13:85-96.
doi: 10.1038/nrg3097 pmid: 22207165
[98] Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger A E. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet, 2012,44:217-220.
doi: 10.1038/ng.1033 pmid: 22246502
[99] Xu S Z, Xu Y, Gong L, Zhang Q F. Metabolomic prediction of yield in hybrid rice. Plant J, 2016,88:219-227.
pmid: 27311694
[100] 刘策, 孟焕文, 程智慧. 植物全基因组选择育种技术原理与研究进展. 分子植物育种, 2020,18:5335-5342.
Liu C, Meng H W, Cheng Z H. Plant genomic selection breeding technical principle and research progress. Mol Plant Breed, 2020,18:5335-5342 (in Chinese with English abstract).
[101] 孙怡迪, 左二伟, 杨辉. 基因编辑技术的风险和机遇. 科学, 2019,71(6):25-28.
Sun Y D, Zuo E W, Yang H. Risks and opportunities of gene editing technology. Science, 2019,71(6):25-28 (in Chinese).
[102] 张喻, 江海霞, 闫文亮, 郭栋良, 杨亮杰, 叶佳丽, 王玥, 谢丽琼. CRISPR_Cas9系统敲除亚麻FAD2基因表达载体的构建. 分子植物育种, 2019,17:2185-2192.
Zhang Y, Jiang H X, Yan W L, Guo D L, Yang L J, Ye J L, Wang Y, Xie L Q. Construction of expression vector for knocking out FAD2 gene in flax by CRISPR/Cas9 system. Mol Plant Breed, 2019,17:2185-2192 (in Chinese with English abstract).
[103] 任羽, 尹俊梅, 潘红兵, 徐世松, 黄少华. 园艺植物遗传图谱的研究进展. 中国农学通报, 2012,28(7):89-94.
Ren Y, Yin J M, Pan H B, Xu S S, Huang S H. Research progress in genetic linkage map of horticulture plant. Chin Agric Sci Bull, 2012,28(7):89-94 (in Chinese with English abstract).
[104] 解增言, 林俊华, 谭军, 舒坤贤. DNA测序技术的发展历史与最新进展. 生物技术通报, 2010, (8):64-70.
Jie Z Y, Lin J H, Tan H, Shu K X. The history and advances of DNA sequencing technojogy. Biotechnol Bull, 2010, (8):64-70 (in Chinese with English abstract).
[105] 王洋坤, 胡艳, 张天真. RAD-seq技术在基因组研究中的现状及展望. 遗传, 2014,36(1):41-49.
Wang Y K, Hu Y, Zhang T Z. Current status and perspective of RAD-seq in genomic research. Heredita, 2014,36(1):41-49 (in Chinese with English abstract).
[106] 张羽, 胡仁发, 周婉莹, 孙旺. 基于限制性内切酶简化基因组测序的两种主要技术. 分子植物育种, 2020,18:3562-3570.
Zhang Y, Hu R F, Zhou W Y, Sun W. The two major technologies of sequencing based on simplified genome by restriction enzyme digestion. Mol Plant Breed, 2020,18:3562-3570 (in Chinese with English abstract).
[107] Anderson C, Khan M A, Catanzariti A M, Jack C A, Nemri A, Lawrence G J, Upadhyaya N M, Hardham A R, Ellis J G, Dodds P N, Jones D A. Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics, 2016,17:667.
doi: 10.1186/s12864-016-3011-9 pmid: 27550217
[108] Zhang J, Long Y, Wang L, Dang Z, Zhang T, Song X, Dang Z, Pei X. Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.). BMC Plant Biol, 2018,18:160.
doi: 10.1186/s12870-018-1366-6 pmid: 30086718
[109] Liu C, Zhu S, Tang S, Wang H, Zheng X, Chen X, Dai Q, Liu T. QTL analysis of four main stem bark traits using a GBS-SNP-based high-density genetic map in ramie. Sci Rep, 2017,7:13458.
doi: 10.1038/s41598-017-13762-w pmid: 29044147
[110] 谈静, 郭俊杰, 曾杰. 多倍体植物复杂性状全基因组关联分析研究进展. 分子植物育种, 2020,18:1282-1289.
Tan J, Guo J J, Zeng J. Advance in genome-wide association analysis of complex traits for polyploid plants. Mol Plant Breed, 2020,18:1282-1289 (in Chinese with English abstract).
[111] Chen K, Luan M, Xiong H, Chen P, Chen J, Gao G, Huang K, Zhu A, Yu C. Genome-wide association study discovered favorable single nucleotide polymorphisms and candidate genes associated with ramet number in ramie (Boehmeria nivea L.). BMC Plant Biol, 2018,18:345.
doi: 10.1186/s12870-018-1573-1 pmid: 30541445
[112] Xie D W, Dai Z G, Yang Z M, Sun J, Zhao D B, Yang X, Zhang L G, Tang Q, Su J G. Genome-wide association study identifying candidate genes influencing important agronomic traits of flax (Linum usitatissimum L.) using SLAF-seq. Front Plant Sci, 2018,8:2232.
doi: 10.3389/fpls.2017.02232 pmid: 29375606
[113] 伊六喜, 斯钦巴特尔, 冯小慧, 贾霄云, 高凤云, 周宇, 张辉. 胡麻木酚素含量的全基因组关联分析. 分子植物育种, 2020,18:765-771.
Yi L X, i Q B S T E, Feng X H, Jia X Y, Gao F Y, Zhou Y, Zhang H. Genome-wide association analysis of lignan content in flax. Mol Plant Breed, 2020,18:765-771 (in Chinese with English abstract).
[114] He L, Xiao J, Rashid K Y, Yao Z, Li P, Jia G, Wang X, Cloutier S, F.M You. Genome-wide association studies for pasmo resistance in flax (Linum usitatissimum L.). Front Plant Sci, 2018,9:1982.
doi: 10.3389/fpls.2018.01982 pmid: 30693010
[115] Soto-Cerda B J, Cloutier S, Quian R, Gajardo H A, Olivos M, You F M. Genome-wide association analysis of mucilage and hull content in flax (Linum usitatissimum L.) seeds. Int J Mol Sci, 2018,19:2870.
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[6] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[10] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[11] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[12] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!