欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1416-1424.doi: 10.3724/SP.J.1006.2022.14088

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

数量性状主基因+多基因混合遗传分析R软件包SEA v2.0

王靖天**(), 张亚雯**, 杜应雯**, 任文龙, 李宏福, 孙文献, 葛超, 章元明*()   

  1. 华中农业大学植物科学技术学院, 湖北武汉 430070
  • 收稿日期:2021-05-15 接受日期:2021-09-10 出版日期:2022-06-12 网络出版日期:2021-10-18
  • 通讯作者: 章元明
  • 作者简介:王靖天, E-mail: 1390032282@qq.com第一联系人:

    ** 同等贡献

  • 基金资助:
    国家自然科学基金项目(32070557)

SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits

WANG Jing-Tian**(), ZHANG Ya-Wen**, DU Ying-Wen**, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming*()   

  1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2021-05-15 Accepted:2021-09-10 Published:2022-06-12 Published online:2021-10-18
  • Contact: ZHANG Yuan-Ming
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(32070557)

摘要:

利用双亲分离群体数量性状表型值可鉴定其主基因+多基因混合遗传模型, 为数量性状遗传基础和作物育种提供参考信息。为全面总结数量性状分离分析的研究成果、添加软件包新功能和矫正以前版本的缺陷, 在R Studio-1.4.1103平台和R编程语言框架下, 开发了具有交互式图形用户界面的R软件包SEA v2.0。该软件可分析14种双亲分离群体类型, 每种群体类型均有数据导入、数据分析、后验概率计算和分布曲线绘制4个模块。为节省计算时间, 用doParallel包并行计算、data.table包读写数据和MASS包估计分布参数。用KScorrect、kolmim和shiny包简化程序。只要用户上传*.csv格式数据文件并设置相关参数, 可快速显示计算结果。通过大豆结荚习性数据分析和Monte Carlo模拟研究, 证实了SEA v2.0软件包的有效性。软件包可从https://cran.r-project.org/web/packages/SEA/index.html下载。

关键词: 双亲分离群体, 数量性状, 主基因+多基因混合模型, R软件包, SEA

Abstract:

The phenotypic values for quantitative trait from bi-parental segregation populations can be used to identify its mixed major genes plus polygenes inheritance model, which provides important information for the genetic basis of quantitative traits and crop breeding. To comprehensively summarize the research results of methodological advances, add the new functions of the software and correct its shortcomings in previous versions, an R software package SEA v2.0 with interactive graphical user interface is developed under R studio-1.4.1103 platform and R environment. In this software, there were 14 types of bi-parental segregation populations, and each type included four modules: data input, data analysis, posterior probability calculation, and distribution curve drawing. To save running time, doParallel was used to conduct parallel computing, data.table was used to quickly read and write datasets, and MASS was used to estimate the parameters in component distributions. KScorrect, kolmim, and shiny packages were used to simplify the programs. As long as users uploaded the data file with *.csv format and set the related parameters, the results could be quickly displayed. The software was validated by real data analysis of soybean podding habit and Monte Carlo simulation studies, and can be downloaded from https://cran.r-project.org/web/packages/SEA/index.html.

Key words: bi-parental segregation population, quantitative trait, mixed major genes plus polygenes inheritance model, R software, SEA

表1

SEA v2.0软件的14种群体组合及其缩写"

群体类型
Population type
缩写
Abbreviation
文件列名
Column name
参考文献
Reference
群体类型
Population type
缩写
Abbreviation
文件列名
Column name
参考文献
Reference
F2 SEA-F2 F2 [12, 13] P1, F1, P2, F2:3 SEA-G4F3 P1, F1, P2, F23 [16]
F2:3 SEA-F3 F23 [14] P1, P2, DH SEA-G3DH P1, P2, DH [15]
DH/RIL SEA-DH DH [15] P1, F1, P2 B1, B2 SEA-G5BC P1, F1, P2, B1, B2 [17]
BIL SEA-BIL BIL [11] P1, F1, P2, B1:2, B2:2 SEA-G5BCF P1, F1, P2, B12, B22 [17]
B1, B2 SEA-BC B1, B2 [13] P1, F1, P2, F2, F2:3 SEA-G5 P1, F1, P2, F2, F23 [18, 19]
B1:2, B2:2 SEA-BCF B12, B22 [11] P1, F1, P2, F2, B1, B2 SEA-G6 P1, F1, P2, F2, B1, B2 [20, 21]
P1, F1, P2, F2 SEA-G4F2 P1, F1, P2, F2 [16] P1, F1, P2, F2:3, B1:2, B2:2 SEA-G6F P1, F1, P2, F23, B12, B22 [22]

表2

SEA v2.0软件的遗传模型与模型代号"

类别
Type
主基因
Major genes
多基因
Polygenes
模型代号 Model code
主基因
Only major genes
主基因+多基因
Major gene & polygenes
多基因 加性-显性-上位性ADE PG-ADI
Polygenes 加性-显性 AD PG-AD
1对主基因 加性-显性 AD 加性-显性-上位性ADE 1MG-AD MX1-AD-ADI
One MG 加性-显性 AD 加性-显性 AD 1MG-AD MX1-AD-AD
加性 A 加性-显性 AD 1MG-A MX1-A-AD
加性 A 加性-上位性 AE 1MG-A MX1-A-AI
加性 A 加性 A 1MG-A MX1-A-A
完全显性 CD 加性-显性 AD 1MG-EAD MX1-EAD-AD
负向完全显性 NCD 加性-显性 AD 1MG-NCD MX1-NCD-AD
2对主基因 加性-显性-上位性 ADE 加性-显性-上位性 ADE 2MG-ADI MX2-ADI-ADI
Two MGs 加性-显性-上位性 ADE 加性-显性 AD 2MG-ADI MX2-ADI-AD
加性-显性 AD 加性-显性 AD 2MG-AD MX2-AD-AD
加性 A 加性-显性 AD 2MG-A MX2-A-AD
加性 A 加性 A 2MG-A MX2-A-A
加性-上位性 AE 加性-上位性 AE 2MG-AI MX2-AI-AI
加性-上位性 AE 加性 A 2MG-AI MX2-AI-A
等加性 EA 加性-显性 AD 2MG-EA MX2-EA-AD
等加性 EA 加性 A 2MG-EA MX2-EA-A
2对主基因 显性上位 DE1 加性 A 2MG-ED MX2-ED-A
Two MGs 隐性上位 RE 加性 A 2MG-ER MX2-ER-A
累加作用 CE1 加性 A 2MG-AE MX2-AE-A
互补作用 CE2 加性 A 2MG-CE MX2-CE-A
重叠作用 DE2 加性 A 2MG-DE MX2-DE-A
抑制作用 IE 加性 A 2MG-IE MX2-IE-A
完全显性 CD 加性-显性 AD 2MG-CD MX2-CD-AD
等显性 ED 加性-显性 AD 2MG-EAD MX2-EAD-AD
3对主基因 加性-上位性 AE 加性-上位性 AE 3MG-AI MX3-AI-AI
Three MGs 加性-上位性 AE 加性 A 3MG-AI MX3-AI-A
加性 A 加性 A 3MG-A MX3-A-A
等加性 EA 加性 A 3MG-CEA MX3-CEA-A
部分等加性 PEA 加性 A 3MG-PEA MX3-PEA-A
4对主基因 加性-上位性 AE 4MG-AI
Four MGs 等加性 EA 4MG-CEA
部分等加性1 PEA1 4MG-EEA
部分等加性2 PEA2 4MG-EEEA

图1

软件包SEA v2.0的使用"

图2

主基因+多基因混合遗传分析输出结果"

表3

P1、F1、P2、B1、B2和F2群体数量性状分离分析的Monte Carlo模拟研究结果"

模型
Model
统计量
Statistic
平均数
Mean (m)
加性效应1
Additive (da)
加性效应2
Additive (db)
显性效应1
Dominant (ha)
显性效应2
Dominant (hb)
误差方差
Residual variance
主基因遗传方差
MG variance
B1主基因遗传率
MG heritability in B1 (%)
功效
Power (%)
1MG-AD 参数真值 TVP 100.00 10.00 3.68 10.00 10.00 50.00 92.00
估计值±标准差
Estimates ± SD
99.97±0.17 9.97±0.09 3.69±0.20 9.96±0.58 10.02±1.31 49.99±3.77
平均差 AD 0.14 0.07 0.15 0.48 1.04 3.02
2MG-ADI 参数真值 TVP 10.00 7.07 3.16 14.14 6.32 10.00 15.00 60.00 90.00
估计值±标准差
Estimates ± SD
101.59±1.77 7.90±1.23 2.25±1.24 11.05±1.83 6.45±1.82 9.64±0.80 12.34±1.29 56.07±3.41
平均差 AD 1.76 1.08 1.11 3.09 1.63 0.71 2.71 4.36
PG-ADI 参数真值 TVP 100.00 10.00 100.00
估计值±标准差
Estimates ± SD
100.32±0.28 9.59±1.34
平均差 AD 0.35 1.18
MX1-AD-ADI 参数真值 TVP 100.00 10.00 17.07 10.00 12.50 50.00 99.00
估计值±标准差
Estimates ± SD
115.24±0.36 10.05±0.15 17.06±0.26 9.47±0.76 12.31±1.41 54.40±4.20
平均差 AD 15.24 0.13 0.21 0.73 1.13 5.25
MX2-ADI-ADI 参数真值 TVP 100.00 7.07 3.16 14.14 6.32 10.00 15.00 60.00 79.00
估计值±标准差
Estimates ± SD
102.06±2.41 7.06±1.10 7.06±1.10 8.79±2.88 4.06±2.99 9.82±1.14 13.04±3.78 47.27±13.16
平均差 AD 2.51 0.87 3.90 5.41 2.93 0.91 3.29 14.01
[1] 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003. pp 22-25.
Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003. pp 22-25(in Chinese).
[2] 章元明. 数量性状分离分析与R软件. 德国博巴辛: 金琅学术出版社, 2017. pp 13-14.
Zhang Y M. Segregation Analysis of Quantitative Traits and R Software. Beau Bassin: Golden Light Academic Publishing, 2017. pp 13-14(in Chinese)
[3] Elston R C, Stewart J. The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data. Genetics, 1973, 73: 695-711.
doi: 10.1093/genetics/73.4.695 pmid: 4711900
[4] 胡中立, 刘后利, 张修富. 质量-数量性状及其遗传基础. 武汉大学学报, 1989, (3):83-90.
Hu Z L, Liu H L, Zhang X F. Qualitative-quantitative traits and their genetic basis. J Wuhan Univ, 1989, (3):83-90 (in Chinese with English abstract).
[5] 莫惠栋. 质量-数量性状的遗传分析: I. 遗传组成和主基因基因型鉴别. 作物学报, 1993, 19: 1-6.
Mo H D. Genetic analysis for qualitative-quantitative traits: I. The genetic constitution of generation populations and the identification of major gene genotypes. Acta Agron Sin, 1993, 19: 1-6 (in Chinese with English abstract).
[6] Jiang C, Pan X, Gu M. The use of mixture models to detect effects of major genes on quantitative characters in a plant breeding experiment. Genetics, 1994, 136: 383-394.
doi: 10.1093/genetics/136.1.383 pmid: 8138172
[7] 王建康. 数量性状主基因-多基因混合遗传模型的鉴别和遗传参数估计的研究. 南京农业大学博士学位论文, 江苏南京 1996.
Wang J K. A Study on Identification and Genetic Parameter Estimation of Mixed Major Genes plus Polygenes Inheritance Model for Quantitative Traits. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 1996 (in Chinese with English abstract).
[8] 章元明. 植物数量性状遗传分离分析法的改进与拓展. 南京农业大学博士学位论文, 江苏南京 2001.
Zhang Y M. A Study on the Improvement and Expansion of Segregation Analysis in the inheritance of Quantitative Traits in Plants. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2001 (in Chinese with English abstract).
[9] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013, 36(6):1-6.
Cao X W, Liu B, Zhang Y M. SEA: a software package of segregation analysis of quantitative traits in plants. J Nanjing Agric Univ, 2013, 36(6):1-6 (in Chinese with English abstract).
[10] 何小红, 盖钧镒. 回交自交系群体数量性状遗传体系的分离分析方法. 作物学报, 2006, 32: 210-216.
He X H, Gai J Y. Segregation analysis of quantitative traits in backcross inbred line population. Acta Agron Sin, 2006, 32: 210-216 (in Chinese with English abstract).
[11] 王金社, 赵团结, 盖钧镒. 回交自交系(BIL)群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2013, 39: 198-206.
doi: 10.3724/SP.J.1006.2013.00198
Wang J S, Zhao T J, Gai J Y. Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in backcross inbred lines (BIL) populations. Acta Agron Sin, 2013, 39: 198-206 (in Chinese with English abstract).
[12] 王建康, 盖钧镒. 利用杂种F2世代鉴定数量性状主基因+多基因混合遗传模型并估计其遗传效应. 遗传学报, 1997, 24: 432-440.
Wang J K, Gai J Y. Identification of major gene and polygene mixed inheritance model and estimation of genetic parameters of a quantitative trait from F2 Progeny. Acta Genet Sin, 1997, 24: 432-440 (in Chinese with English abstract).
[13] 章元明, 盖钧镒, 王建康. 利用回交B1和B2及F2群体鉴定数量性状两对主基因-多基因混合遗传模型. 生物数学学报, 2000, 15: 358-366.
Zhang Y M, Gai J Y, Wang J K. Identification of two major genes plus polygenes mixed inheritance model of quantitative traits in B1 and B2, and F2. J Biomath, 2000, 15: 358-366 (in Chinese with English abstract).
[14] 章元明, 盖钧镒, 戚存扣. 植物数量性状遗传体系检测中回交或自交家系重复试验数据的分析方法. 遗传, 2001, 23: 329-332.
Zhang Y M, Gai J Y, Qi C K. Detection of genetic system of quantitative traits using backcross and selfing families. Hereditas (Beijing), 2001, 23: 329-332 (in Chinese with English abstract).
[15] 章元明, 盖钧镒, 王永军. 利用P1、P2和DH或RIL群体联合分离分析的拓展. 遗传, 2001, 23: 467-470.
Zhang Y M, Gai J Y, Wang Y J. An expansion of joint segregation analysis of quantitative trait for using P1, P2 and DH or RIL populations. Hereditas (Beijing), 2001, 23: 467-470 (in Chinese with English abstract).
[16] 章元明, 盖钧镒, 张孟臣. 利用P1、F1、P2和F2或F2:3世代联合的数量性状分离分析. 西南农业大学学报, 2000, 42(1):6-9.
Zhang Y M, Gai J Y, Zhang M C. Jointly segregating analysis of P1, P2, F1, and F2 or F2:3 families. J Southwest Agric Univ, 2000, 42(1):6-9 (in Chinese with English abstract).
[17] 章元明, 盖钧镒. 数量性状分离分析中分布参数估计的IECM算法. 作物学报, 2000, 26: 699-706.
Zhang Y M, Gai J Y. The IECM algorithm for estimation of component distribution parameters in segregating analysis of quantitative traits. Acta Agron Sin, 2000, 26: 699-706 (in Chinese with English abstract).
[18] 王建康, 盖钧镒. 数量性状主-多基因混合遗传的P1、P2、F1、F2和F2:3联合分析方法. 作物学报, 1998, 24: 651-659.
Wang J K, Gai J Y. Identification of major gene and polygene mixed inheritance model of quantitative traits by using joint analysis of P1, F1, P2, F2 and F2:3 generations. Acta Agron Sin, 1998, 24: 651-659 (in Chinese with English abstract).
[19] Gai J Y, Wang J K. Identification and estimation of a QTL model and its effects. Theor Appl Genet, 1998, 97: 1162-1168.
doi: 10.1007/s001220051005
[20] 盖钧镒, 章元明, 王建康. QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析. 作物学报, 2000, 26: 385-391.
Gai J Y, Zhang Y M, Wang J K. A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agron Sin, 2000, 26: 385-391 (in Chinese with English abstract).
[21] 章元明, 盖钧镒, 戚存扣. 数量性状分离分析的精确度及其改善途径. 作物学报, 2001, 27: 787-793.
Zhang Y M, Gai J Y, Qi C K. The precision of segregating analysis of quantitative trait and its improving methods. Acta Agron Sin, 2001, 27: 787-793 (in Chinese with English abstract).
[22] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Series B Stat Methodol, 1977, 39: 1-38.
[23] Zhang Y M, Gai J Y, Yang Y H. The EIM algorithm in the joint segregation analysis of quantitative traits. Genet Res, 2003, 81: 157-163.
doi: 10.1017/S0016672303006141
[24] Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr, 1974, 19: 716-723.
doi: 10.1109/TAC.1974.1100705
[25] Bernard R L. Two genes affecting stem termination in soybeans. Crop Sci, 1972, 12: 235-239.
doi: 10.2135/cropsci1972.0011183X001200020028x
[26] Wang J, Podlich D W, Cooper M, DeLacy I H. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theor Appl Genet, 2001, 103: 804-816.
doi: 10.1007/s001220100628
[27] Wen Y J, Zhang Y W, Zhang J, Feng J Y, Zhang Y M. The improved FASTmrEMMA and GCIM algorithms for genome-wide association and linkage studies in large mapping populations. Crop J, 2020, 8: 723-732.
doi: 10.1016/j.cj.2020.04.008
[1] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[2] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[3] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[4] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[5] 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70.
[6] 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184.
[7] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析[J]. 作物学报, 2020, 46(10): 1517-1525.
[8] 蒙姜宇,傅鹰,贺亚军,钱伟. 利用DH和IF2群体检测油菜籽粒油酸、亚油酸、亚麻酸含量QTL[J]. 作物学报, 2019, 45(9): 1338-1348.
[9] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[10] 李英双,胡丹,聂蛟,黄科慧,张玉珂,张园莉,佘恒志,方小梅,阮仁武,易泽林. 甜荞株高和茎粗的遗传分析[J]. 作物学报, 2018, 44(8): 1185-1195.
[11] 郭海平, 孙高阳, 张晓祥, 闫鹏帅, 刘坤, 谢惠玲, 汤继华, 丁冬, 李卫华. 基于SSSL群体的玉米穗下节间长QTL分析[J]. 作物学报, 2018, 44(04): 522-532.
[12] 贺亚军, 吴道明, 傅鹰, 钱伟. 利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL[J]. 作物学报, 2018, 44(04): 533-541.
[13] 方雅洁,朱亚军,吴志超,陈凯,申聪聪,石英尧,徐建龙. 全基因组关联定位籼稻种质资源外观和加工品质QTL[J]. 作物学报, 2018, 44(01): 32-42.
[14] 仲杰,温培正,孙志广,肖世卓,胡金龙,张乐,江玲,程遐年,刘裕强,万建民. 利用MR1523/苏御糯F2:3群体定位水稻抗灰飞虱QTL[J]. 作物学报, 2017, 43(11): 1596-1602.
[15] 陈雪萍**,荆凌云**,王嘉,荐红举,梅家琴,徐新福,李加纳,刘列钊*. 甘蓝型油菜茎秆菌核病抗性与木质素及其单体比例的相关性分析及QTL定位[J]. 作物学报, 2017, 43(09): 1280-1289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!