欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1401-1415.doi: 10.3724/SP.J.1006.2022.12032

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻OsLPL2/PIR基因抗旱耐盐机制研究

周文期1,2(), 强晓霞3, 王森4, 江静雯1, 卫万荣1,*()   

  1. 1西南野生动植物资源保护重点实验室 / 西华师范大学生命科学学院, 四川南充 637000
    2甘肃省农业科学院作物研究所, 甘肃兰州 730070
    3甘肃省兰州市第四中学, 甘肃兰州 730050
    4陕西省畜牧产业试验示范中心, 陕西咸阳 713702
  • 收稿日期:2021-05-01 接受日期:2021-10-19 出版日期:2022-06-12 网络出版日期:2021-11-20
  • 通讯作者: 卫万荣
  • 作者简介:E-mail: zhouwenqi850202@163.com
  • 基金资助:
    2020年甘肃省科协青年科技人才托举工程项目和甘肃省农业科学院农业科技创新专项——博士基金项目(2020GAAS34)

Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice

ZHOU Wen-Qi1,2(), QIANG Xiao-Xia3, WANG Sen4, JIANG Jing-Wen1, WEI Wan-Rong1,*()   

  1. 1Key Laboratory of Southwest China Wildlife Resources Conservation / College of Life Sciences, China West Normal University, Nanchong 637000, Sichuan, China
    2Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    3Lanzhou No. 4 High School, Lanzhou 730050, China
    4Shannxi Province Animal Husbandry Industry Experimental Demonstration Center, Xianyang 713702, Shaanxi, China
  • Received:2021-05-01 Accepted:2021-10-19 Published:2022-06-12 Published online:2021-11-20
  • Contact: WEI Wan-Rong
  • Supported by:
    Young Scientific and Technological Talents Support Project of Gansu Association for Science and Technology in 2020 and the Agricultural Science and Technology Innovation Program of Gansu Academy of Agricultural Sciences(2020GAAS34)

摘要:

干旱威胁着全球农业生产, 限制了农业可持续发展的前景。植物叶表皮在生长发育、抵御逆境胁迫、与外界环境进行水分和气体交换中, 发挥了至关重要的作用。本研究中, 利用水稻(Oryza sativa) less pronounced lobe epidermal cell 2-1 (lpl2-1)和less pronounced lobe epidermal cell 2-2 (lpl2-2)突变体为研究材料, 与野生型中花11 (Zhonghua 11, ZH11)经干旱胁迫和不同浓度盐处理, 发现lpl2-1lpl2-2对逆境胁迫响应更敏感, 复水后统计成活率极显著降低, 低于对照1/2。相比ZH11, lpl2-1lpl2-2株高变矮, 根长变短, 相同叶序气孔密度、气孔开度均极显著增加, 且表皮扁平细胞边缘锯齿状凸出变平滑, 嵌套不紧密, 导致lpl2-1lpl2-2比ZH11水分散失更多; 离体叶片失水实验也证明了lpl2-1lpl2-2叶片在等时间内失水更快, 失水率更高; 且过表达OsLPL2转入lpl2-1中, OE-OsLPL2/lpl2-1转基因阳性植株恢复了lpl2-1平滑表皮及对干旱和盐胁迫的敏感表型。研究结果表明, OsLPL2基因不仅控制水稻表皮细胞形态建成, 而且通过调控气孔密度、气孔开度、根生长发育等在响应植物逆境胁迫过程发挥关键作用。本研究为揭示水稻OsLPL2参与干旱胁迫的应答分子调控机制提供了一定的理论基础。

关键词: 水稻, 抗旱, 耐盐性, SCAR/WAVE复合体, 植物表皮细胞

Abstract:

Drought threatens global agricultural production and limits the prospects for sustainable agricultural development. Plant leaf epidermis plays a vital role in the process of growth, development, and resistance to adversity stress, and water and gas exchange with the external environment. In this study, compared with the wild-type Zhonghua 11 (ZH11), we found that mutants less pronounced lobe epidermal cell 2-1 (lpl2-1) and less pronounced lobe epidermal cell 2-2 (lpl2-2) were more sensitive to drought and salt stress response, and the survival rate after rewatering was extremely significantly reduced, which was less than half of the control. Compared with ZH11, lpl2-1 and lpl2-2 had shorter plant height, shorter root length, significantly increased stomatal density and stomatal openings in the same phyllodes, and the serrated lobe of the epidermal cell margin becomes smoother, and the epidermal cell nesting was not tight, which might result in faster and more water loss of lpl2-1 and lpl2-2 than ZH11. The water loss experiment of separated leaves also proved that the water loss rate of lpl2-1 and lpl2-2 leaves was higher than that of the ZH11 in equal time. Overexpression of OsLPL2 was transferred into lpl2-1, and the OE-OsLPL2/lpl2-1 transgenic positive plants recovered the smooth epidermis of lpl2-1 and the sensitive phenotype to drought and salt stress. These results showed that OsLPL2 gene not only controlled the microfilament synthesis and morphogenesis of rice epidermal cells, but also played a key role in response to plant stress by regulating stomatal density, stomatal conductance, and root growth and development. This study provides a theoretical basis for revealing the molecular regulation mechanism of OsLPL2 in response to drought stress in rice.

Key words: rice, drought tolerance, salt resistance, SCAR/WAVE complex, plant leaf epidermis

表1

本研究使用的引物序列"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
酶切位点
Restriction enzyme cutting site
p1301-LPL2F
p1301-LPL2R
GGTACCATGGCCATCCCCGTCGAGG
ACTAGTTCAAGTAGCTCTCTGTGGCAATG
Kpn I /Spe I
RT-LPL2-F
RT-LPL2-R
CCTGGAATCATCTCGTGTTATCC
GCTGGGCAGAGTCATTGTAAAG

TUB-F
TUB-R
TTTCACTCTTGGTGTGAAGCAGAT
GACTTCCTTCACGATTTCATCGTAA

表2

OsLPL2在不同物种中的基因编号及功能注释"

物种
Specie
同源基因
Orthologous gene
功能预测
Putative function
水稻Oryza sativa LOC_Os03g05020 PIR, putative, expressed
拟南芥Arabidopsis thaliana AT5G18410 Transcription activators
玉米Zea mays GRMZM2G113174 PIROGI; similar to KLK/PIR/PIR121/PIRP (KLUNKER, PIROGI)
玉米Zea mays GRMZM2G170567 PIROGI; similar to KLK/PIR/PIR121/PIRP (KLUNKER, PIROGI)
二穗短柄草Brachypodium distachyum Bradi1g75470 Protein PIR
高粱Sorghum bicolor Sb01g047340 Protein PIR
白杨树Populus trichocarpa POPTR_0013s04800 PIR121; transcription activator
葡萄Vitis vinifera GSVIVG00026355001 GSVIVG00026355001
人类Homo sapiens HsPIR121/CYFIP2 KLK/PIR/PIR121/PIRP (KLUNKER, PIROGI)

图1

OsLPL2/PIR在不同物种中的同源性分析 AtPIR是拟南芥中PIR蛋白, OsLPL2是水稻中PIR的同源蛋白, HsPIR121是人类中PIR的同源蛋白, ZmBRK2是玉米中PIR的同源蛋白, 同源性序列分析表明, 氨基酸相似度高达72.9%。OsLPL2尤其与玉米中BRK2同源蛋白相似性高达93%。"

图2

lpl2-1幼苗期植株较矮, 根长及根细胞长度变短 A~D: 分别生长1周、2周、3周和4周的lpl2-1植株; E, F: 分别是中花11与lpl2-1生长1周的根细胞扫描图; G, H: 中花11与lpl2-1生长4周的根细胞扫描图; I: 测量1~4周的植株高度, N = 30; J: 测量1~4周的根长, N = 30, 1、2、3和4分别表示第1、2、3和4周。A~D: 标尺为1 cm; E~H: 标尺为100 μm。*表示与对照有显著性差异, P < 0.05; **表示与对照有极显著性差异(P < 0.01)。"

图3

lpl2-2突变体叶片表皮形态 A: ZH11幼叶表皮细胞, 细胞边缘锯齿状凸出(黑色斜箭头所示); B: lpl2-2幼叶表皮细胞变平滑(黑色斜箭头所示), 发育畸形的气孔, 类似于保卫细胞母细胞(箭头所示); C: 幼叶叶片气孔开度统计, N = 100; D: ZH11成熟叶气孔结构放大图, 成熟气孔由2个副卫细胞(SC)和2个保卫细胞(GC)构成, SP表示气孔开度; E: lpl2-2成熟叶气孔结构放大图, SL表示气孔长度, SW表示气孔宽度; F: 成熟叶叶片气孔开度统计, N = 100。G, H: ZH11与lpl2-2第4、5叶和剑叶、次剑叶气孔密度, N > 3000; A~E: 标尺为20 μm。**表示极显著性差异(P < 0.01)。"

图4

lpl2对干旱胁迫更敏感 A, E: 干旱处理前的ZH11和lpl2-1; B, F: 干旱后的ZH11和lpl2-1; C、G: 复水后的ZH11和lpl2-1; I: 干旱处理前的ZH11和lpl2-2; J: 干旱后的ZH11和lpl2-2; K: 复水后的ZH11和lpl2-2; D, H, L: 成活率。A~D, I~L: 苗期干旱, 标尺为10 cm; E-H, 抽穗期干旱, 标尺为20 cm。每次实验都定苗50株, 3次生物学重复实验。D、H、L统计N = 150, **表示极显著性差异(P < 0.01)。"

图5

lpl2对盐胁迫更敏感 A: ZH11与lpl2-1幼苗; B: 不同浓度NaCl处理, lpl2-1响应比对照更敏感; C: 浇水恢复后, lpl2-1成活植株明显少于CK; D: ZH11与lpl2-2幼苗; E: 不同浓度NaCl处理, lpl2-2响应比对照更敏感; F: 浇水恢复后, lpl2-2成活植株明显少于CK; A~F, 标尺为10 cm, 每次实验都定苗25株, 4次生物学重复。G, H: lpl2-1、lpl2-2和ZH11成活率统计, N = 100, **表示极显著性差异(P < 0.01)。"

图6

ZH11与lpl2-1和lpl2-2幼叶与成熟叶离体叶片失水率 A: 幼苗期ZH11与lpl2离体叶片失水率对比, 第4、第5叶; B: 抽穗期ZH11与lpl2离体叶片失水率对比, 剑叶和次剑叶。N = 50, **表示与对照有极显著性差异(P < 0.01)。lpl2-2和lpl2-1气孔密度及失水率无显著差异, 但是lpl2与CK差异极显著。"

图7

OE-OsLPL2/lpl2-1恢复了lpl2-1对干旱和盐胁迫耐受性 A: 干旱处理前幼苗期ZH11和Com #3; B: 干旱后的ZH11和Com #3; C: 复水后的ZH11和Com #3; D: 干旱复水后成活率统计, N = 150, 3次生物学重复, 每次定苗50株; E~H: 分别是ZH11与Com #3不同浓度NaCl处理前, 处理6 d、8 d及恢复5 d后植株表型; I: 浇水恢复后, Com #3成活率与ZH11无显著差异, 标尺为10 cm, N = 100, 4次生物学重复, 每次定苗25株, NS: not significant。"

[1] Farooq M, Wahid A, Lee D J, Ito O, Siddique K H M. Advances in drought resistance of rice. CRC Crit Rev Plant Sci, 2009, 28: 199-217.
doi: 10.1080/07352680902952173
[2] Lampayan R L, Rejesus R M, Singleton G R, Bouman B A M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res, 2015, 170: 95-108.
doi: 10.1016/j.fcr.2014.10.013
[3] 饶玉春, 戴志俊, 朱怡彤, 姜嘉骥, 马若盈, 王予烨, 王跃星. 水稻抗干旱胁迫的研究进展. 浙江师范大学学报(自然科学版), 2020, 43: 417-429.
Rao Y C, Dai Z J, Zhu Y T, Jiang J J, Ma R Y, Wang Y Y, Wang Y X. Advances in research of drought resistance in rice. J Zhejiang Norm Univ (Nat Sci Edn), 2020, 43: 417-429 (in Chinese with English abstract).
[4] Sahebi M, Hanafi M M, Rafii M Y, Mahmud T M M, Azizi P, Osman M, Abiri R, Taheri S, Kalhori N, Shabanimofrad M, Miah G, Atabaki N. Improvement of drought tolerance in rice (Oryza sativa L.): genetics, genomic tools, and the WRKY gene family. Biomed Res Int, 2018, 2018: 3158474.
[5] 周玉乾, 孟思远, 周文期. 植物表皮形态建成的分子调控机制. 西北农业学报, 2018, 27: 609-616.
Zhou Y Q, Meng S Y, Zhou W Q. Molecular mechanism for regulating epidermal morphogenesis in plants. Acta Agric Boreali-Occident Sin, 2018, 27: 609-616 (in Chinese with English abstract).
[6] Martin C, Glover B J. Functional aspects of cell patterning in aerial epidermis. Curr Opin Plant Biol, 2007, 10: 70-82.
doi: 10.1016/j.pbi.2006.11.004
[7] Yanagisawa M, Desyatova A S, Belteton S A, Mallery E L, Turner J A, Szymanski D B. Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis. Nat Plants, 2015, 1: 15014.
doi: 10.1038/nplants.2015.14 pmid: 27246881
[8] Luo L, Zhou W Q, Liu P, Luo L, Li C X, Hou S W. The development of stomata and other epidermal cells on the rice leaves. Biol Plant, 2012, 56: 521-527
doi: 10.1007/s10535-012-0045-y
[9] Zhou W Q, Wang Y C, Wu Z L, Luo L, Liu P, Yan L F, Hou S W. Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice. J Exp Bot, 2016, 67: 4311-4323.
doi: 10.1093/jxb/erw214
[10] Brembu T, Winge P, Seem M, Bones A M. NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis. Plant Cell, 2004, 16: 2335-2349.
pmid: 15316111
[11] Yanagisawa M, Zhang C, Szymanski D B. ARP2/3-dependent growth in the plant kingdom: scars for life. Front Plant Sci, 2013, 4: 166.
doi: 10.3389/fpls.2013.00166 pmid: 23802001
[12] Zhu X, Xiong L. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proc Natl Acad Sci USA, 2013, 110: 17790-17795.
doi: 10.1073/pnas.1316412110
[13] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138-1152.
doi: 10.1105/tpc.111.083485
[14] Mauricio R. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Nat, 1998, 151: 20-28.
doi: 10.1086/286099
[15] Frank M J, Smith L G. A small, novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells. Curr Biol, 2002, 12: 849-853.
pmid: 12015123
[16] Buckley T N. The control of stomata by water balance. New Phytol, 2005, 168: 275-291.
pmid: 16219068
[17] Bergmann D C, Sack F D. Stomatal development. Annu Rev Plant Biol, 2007, 58: 163-181.
doi: 10.1146/arplant.2007.58.issue-1
[18] Liu T, Ohashi-Ito K, Bergmann D C. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. Development, 2009, 136: 2265-2276.
doi: 10.1242/dev.032938
[19] Kamiya N, Itoh J, Morikami A, Nagato Y, Matsuoka M. The SCARECROW gene’s role in asymmetric cell divisions in rice plants. Plant J, 2003, 36: 45-54.
doi: 10.1046/j.1365-313X.2003.01856.x
[20] Apostolakos P, Livanos P, Giannoutsou E, Panteris E, Galatis B. The intracellular and intercellular cross-talk during subsidiary cell formation in Zea mays: existing and novel components orchestrating cell polarization and asymmetric division. Ann Bot, 2018, 122: 679-696.
[21] Wu Z L, Chen Li, Yu Q, Zhou W Q, Gou X P, Li J, Hou S W. Multiple transcriptional factors control stomata development in rice. New Phytol, 2019, 223: 220-232.
doi: 10.1111/nph.2019.223.issue-1
[22] Chater C C C, Caine R S, Fleming A J, Gray J E. Origins and evolution of stomatal development. Plant Physiol, 2017, 174: 624-638.
doi: 10.1104/pp.17.00183
[23] Deeks M J, Kaloriti D, Davies B, Malho R, Hussey P J. Arabidopsis NAP1 is essential for Arp2/3-dependent trichome morphogenesis. Curr Biol, 2004, 14: 1410-1414.
doi: 10.1016/j.cub.2004.06.065
[24] Zhang C, Mallery E L, Schlueter J, Huang S, Fan Y, Brankle S, Staiger C J, Szymanski D B. Arabidopsis SCARs function interchangeably to meet actin-related protein 2/3 activation thresholds during morphogenesis. Plant Cell, 2008, 20: 995-1011.
doi: 10.1105/tpc.107.055350
[25] Jorgens C I, Grunewald N, Hulskamp M, Uhrig J F. A role for ABIL3 in plant cell morphogenesis. Plant J, 2010, 62: 925-935.
[26] Bai J T, Zhu X D, Wang Q, Zhang J, Chen H, Dong G, Zhu L, Zheng H, Xie Q, Nian J, Chen F, Fu Y, Qian Q, Zuo J. Rice TUTOU1 encodes a suppressor of camp receptor-like protein that is important for actin organization and panicle development. Plant Physiol, 2015, 169: 1179-1191.
doi: 10.1104/pp.15.00229
[27] Rao Y C, Yang Y L, Xu J, Li X, Leng Y, Dai L, Huang L, Shao G, Ren D, Hu J, Guo L, Pan J, Zeng D. EARLY SENESCENCE1 encodes a SCAR-LIKE PROTEIN2 that affects water loss in rice. Plant Physiol, 2015, 169: 1225-1239.
doi: 10.1104/pp.15.00991
[28] Eden S, Rohatgi R, Podtelejnikov A V, Mann M, Kirschner M W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature, 2002, 418: 790-793.
doi: 10.1038/nature00859
[29] Welch M D, Mullins R D. Cellular control of actin nucleation. Annu Rev Cell Dev Biol, 2002, 18: 247-288.
doi: 10.1146/cellbio.2002.18.issue-1
[30] Kotchoni S O, Zakharova T, Mallery E L, Le J, El-Assal S E D, Szymanski D B. The association of the Arabidopsis actin- related protein 2/3 complex with cell membranes is linked to its assembly status but not its activation. Plant Physiol, 2009, 151: 2095-2109.
doi: 10.1104/pp.109.143859 pmid: 19801398
[31] Frank M J. Three BRICK genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis. Development, 2003, 130: 753-762.
pmid: 12506005
[32] Djakovic S, Dyachok J, Burke M, Frank M J, Smith L G. BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development, 2006, 133: 1091-1100.
pmid: 16481352
[33] Basu D, El-Assal S E, Le J, Mallery E L, Szymanski D B. Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development, 2004, 131: 4345-4355.
doi: 10.1242/dev.01307
[34] Basu D, Le J, Zakharova T, Mallery E L, Szymanski D B. A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proc Natl Acad Sci USA, 2008, 105: 4044-4049.
doi: 10.1073/pnas.0710294105
[35] Jiang K, Sorefan K, Deeks M J, Bevan M W, Hussey P J, Hetherington A M. The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. Plant Cell, 2012, 24: 2031-2040.
doi: 10.1105/tpc.112.096263
[36] Singh D and Laxmi A. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci, 2015, 6: 895.
[37] 周文期. 调控水稻叶表皮发育的LPL2DSP1基因克隆与功能分析. 兰州大学博士学位论文, 甘肃兰州, 2015.
Zhou W Q. The Cloning and Functional Analysis of LPL2 and DSP1, Two Genes, That Regulate the Epidermal Cell Development in Rice. PhD Dissertation of Lanzhou University, Lanzhou, Gansu, China, 2015 (in Chinese with English abstract).
[38] Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev, 2009, 23: 1805-1817.
doi: 10.1101/gad.1812409
[39] 周文期, 寇思荣, 连晓荣, 杨彦忠, 刘忠祥, 王晓娟, 何海军, 周玉乾. 水稻和玉米叶表皮突变体的筛选和鉴定. 植物生理学报, 2020, 56: 189-199.
Zhou W Q, Kou S R, Lian X R, Yang Y Z, Liu Z X, Wang X J, He H J, Zhou Y Q. Screening and identification of leaf epidermal mutants in rice and maize. Plant Physiol J, 2020, 56: 189-199 (in Chinese with English abstract).
[40] 周文期, 强晓霞, 聂永鑫, 卫万荣. 水稻OsPP1a基因克隆和RNAi-OsPP1a遗传转化分析. 植物生理学报, 2020, 56: 1561-1572.
Zhou W Q, Qiang X X, Nie Y X, Wei W R. Cloning of OsPP1a from rice and analysis of its RNAi-OsPP1a genetic transformation. Plant Physiol J, 2020, 56: 1561-1572 (in Chinese with English abstract).
[41] Chen Z, Borek D, Padrick S B, Gomez T S, Metlagel Z, Ismail A M, Umetani J, Billadeau D D, Otwinowski Z, Rosen M K. Structure and control of the actin regulatory WAVE complex. Nature, 2010, 468: 533-538.
doi: 10.1038/nature09623
[42] Huang L, Chen L, Wang L, Yang Y, Rao Y, Ren D, Dai L, Gao Y, Zou W, Lu X, Zhang G, Zhu L, Hu J, Chen G, Shen L, Dong G, Gao Z, Guo L, Qian Q, Zeng D. A Nck-associated protein 1-like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice. Plant J, 2019, 98: 884-897.
doi: 10.1111/tpj.2019.98.issue-5
[43] Gao Y, Wu M, Zhang M, Jiang W, Liang E, Zhang D, Zhang C, Xiao N, Chen J. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty. Plant Mol Biol, 2018, 97: 311-323.
doi: 10.1007/s11103-018-0739-4
[44] Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J, 2010, 61: 156-165.
doi: 10.1111/tpj.2009.61.issue-1
[45] Zhao Y, Zhao S, Mao T, Qu X, Cao W, Zhang L, Zhang W, He L, Li S, Ren S, Zhao J, Zhu G, Huang S, Ye K, Yuan M, Guo Y. The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis. Plant Cell, 2011, 23: 2314-2330.
doi: 10.1105/tpc.111.086546
[46] Yoo C Y, Pence H E, Jin J B, Miura K, Gosney M J, Hasegawa P M, Mickelbart M V. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell, 2010, 22: 4128-4141.
doi: 10.1105/tpc.110.078691
[47] Li X, Han H, Chen M, Yang W, Liu L, Li N, Ding X H. Chu Z H. Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice. Plant Mol Biol, 2016, 93: 21-34.
doi: 10.1007/s11103-016-0544-x
[48] Park J J, Jin P, Yoon J, Yang J I, Jeong H J, Ranathunge K, Schreiber L, Franke R, Lee I J, An G. Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74: 91-103.
doi: 10.1007/s11103-010-9656-x
[49] Liu J, Zhang F, Zhou J, Chen F, Wang B, Xie X. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol, 2012, 78: 289-300.
doi: 10.1007/s11103-011-9860-3
[50] Dey A, Samanta M K, Gayen S, Maiti M K. The sucrose non fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC Plant Biol, 2016, 16: 158.
doi: 10.1186/s12870-016-0845-x
[51] Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424: 901-908.
doi: 10.1038/nature01843
[52] Pantin F, Blatt M R. Stomatal response to humidity: blurring the boundary between active and passive movement. Plant Physiol, 2018, 176: 485-488.
doi: 10.1104/pp.17.01699
[53] Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci, 2015, 72: 673-689.
doi: 10.1007/s00018-014-1767-0
[54] 刘延波, 项阳, 秦利军, 赵德刚. 转玉米ZmSDD1基因烟草降低气孔密度提高抗旱性. 植物生理学报, 2014, 50: 1889-1898.
Liu Y B, Xiang Y, Qin L J, Zhao D G. Improvement of drought tolerance in transgenic tobacco expressed maize ZmSDD1 by reducing stomatal density. Plant Physiol J, 2014, 50: 1889-1898 (in Chinese with English abstract).
[55] 陈腾君, 曾丹, 张帆, 周永力, 石英尧, 黎志康. 胁迫相关蛋白激酶OsSAPK9调控水稻对铝胁迫的反应. 植物遗传资源学报, 2018, 19: 1149-1153.
Chen T J, Zeng D, Zhang F, Zhou Y L, Shi Y Y, Li Z K. Stress-activated protein kinase OsSAPK9 is involved in regulating tolerant response to al stress in rice. J Plant Genet Res, 2018, 19: 1149-1153 (in Chinese with English abstract).
[56] Zhou W Q, Zhou Y Q, He C Y, Mou B Q, Zhou W. Over- expression of Oshox4 enhances drought and salinity tolerance in rice. Russ J Plant Physiol, 2020, 67: 1152-1162.
doi: 10.1134/S1021443720060205
[57] Isner J C, Xu Z, Costa J M, Monnet F, Batstone T, Ou X, Deeks M J, Genty B, Jiang K, Hetherington A M. Actin filament reorganization controlled by the SCAR/WAVE complex mediates stomatal response to darkness. New Phytol, 2017, 215: 1059-1067.
doi: 10.1111/nph.2017.215.issue-3
[58] Xiang Y, Sun X, Bian X, Wei T, Han T, Yan J, Zhang A. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. J Exp Bot, 2021, 72: 1399-1410.
doi: 10.1093/jxb/eraa507 pmid: 33130877
[59] Zhao B Y, Hu Y F, Li J J, Yao X, Liu K D. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis. Bot Stud, 2016, 57: 12-24.
doi: 10.1186/s40529-016-0127-9
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[6] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!