欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 781-790.doi: 10.3724/SP.J.1006.2022.12026

• 综述 •    下一篇

水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展

陈悦(), 孙明哲, 贾博为, 冷月, 孙晓丽*()   

  1. 黑龙江八一农垦大学作物逆境分子生物学实验室, 黑龙江大庆163319
  • 收稿日期:2021-04-14 接受日期:2021-08-20 出版日期:2022-04-12 网络出版日期:2021-08-30
  • 通讯作者: 孙晓丽
  • 作者简介:E-mail: 18104516702@163.com
  • 基金资助:
    黑龙江八一农垦大学研究生创新科研项目(YJSCX2021-Y41);国家自然科学基金项目(31971826);中央支持地方高校改革发展资金人才培养支持计划项目和黑龙江省留学归国人员择优资助项目资助

Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response

CHEN Yue(), SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li*()   

  1. Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2021-04-14 Accepted:2021-08-20 Published:2022-04-12 Published online:2021-08-30
  • Contact: SUN Xiao-Li
  • Supported by:
    Innovative Research Program for Graduates of Heilongjiang Bayi Agricultural University(YJSCX2021-Y41);National Natural Science Foundation of China(31971826);Central Support Fund for Reform and Development of Local Universities and Talent Cultivation, and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Heilongjiang Province

摘要:

AP2/ERF (APETALA2/ethylene responsive factor)是植物特有的转录因子家族, 广泛参与生长发育和胁迫应答等多种生物学进程。水稻是我国重要的粮食作物, 但在其生长过程中受到多种逆境的影响。目前研究发现AP2/ERF转录因子在水稻逆境应答中扮演十分重要的角色。本文结合国内外研究进展, 综述了水稻AP2/ERF转录因子的分类和结构, 并梳理了不同亚家族的AP2/ERF转录因子响应病害、干旱、高盐和低温胁迫的功能和机制研究进展, 为深入阐释水稻AP2/ERF转录因子调控逆境应答的分子网络及品种改良提供参考。

关键词: 水稻, 转录因子, AP2/ERF, 逆境应答

Abstract:

AP2/ERF (APETALA2/ethylene responsive factor) is a family of plant specific transcription factors that are widely involved in various biological processes including plant growth and development and stress responses. Rice is an important food crop in China, but it is severely affected by multiple adverse environmental factors during growth period. It has been found that AP2/ERF transcription factors play important roles in stress response in rice. In this paper, we reviewed the classification and structure architecture of rice AP2/ERF transcription factors and summarized the function and molecular mechanism of different AP2/ERF subfamilies in rice response to disease, drought, saline, and low temperature stresses. This study provides a reference for further interpretation of the molecular network of rice AP2/ERFs-mediated regulatory network in stress responses and their application potential for stress resistance improvement of rice cultivars.

Key words: rice, transcription factors, AP2/ERF, stress response

表1

拟南芥AP2/ERF转录因子家族的分类[7,8]"

Sakuma等[8] Sakuma et al. [8] Nakano等[7] Nakano et al. [7]
分类
Classification
亚组
Subgroup
数量
No.
分类
Classification

Group
数量
No.
AP2亚家族
AP2 subfamily
17 AP2家族
AP2 family
18
2个AP2结构域
Two AP2 domains
14 2个AP2结构域
Two AP2 domains
14
1个AP2结构域
One AP2 domain
3 1个AP2结构域
One AP2 domain
4
DREB, ERF亚家族
DREB, ERF subfamily
121 ERF家族
ERF family
122
DREB亚家族
DREB subfamily
A (1-6) 56 I-IV 57
ERF亚家族
ERF subfamily
B (1-6) 65 V-X 58
VI-L and Xb-L 7
AL079349 1 At4g13040 1
RAV亚家族
RAV subfamily
6 RAV家族
RAV family
6
合计Total 145 合计Total 147

图1

植物AP2/ERF转录因子的结构域[9]"

表2

水稻 AP2/ERF 转录因子家族的分类情况[10]"

亚家族
Subfamily
结构域组成
Domain architecture
结合元件
Binding cis-element
亚组
Subgroup
数量
No.
AP2 2个AP2结构域
Two AP2 domains
GCAC(A/G) N (A/T)
TCCC(A/G)ANG(C/T)
Ia 10
Ib 11
Ic 6
RAV 1个AP2结构域 One AP2 domain
1个B3结构域 One B3 domain
CAACA
CACCTG
II 5
ERF 1个AP2结构域
One AP2 domain
GCC-box(AGCCGCC) IIIa 32
IIIb 32
IIIc 16
CBF/DREB 1个AP2结构域
One AP2 domain
DRE/CRT(A/GCCGAC) IVa 10
IVb 6
IVc 16
IVd 24
Soloist 1个AP2/ERF结构域
One AP2/ERF domain
Soloist 2
合计Total 170

表3

参与逆境应答的水稻AP2/ERF 转录因子"

亚家族
Subfamily
基因
Gene
结合元件
Binding cis-element
参与胁迫类型
Stresses involved in
参考文献
References
ERF OsEREBP1 GCC-box 正调控水稻抗病性和耐旱性
Positive regulation of disease resistance and drought tolerance in rice
[30]
OsERF83 GCC-box 正调控水稻抗病性
Positive regulation of disease resistance in rice
[31]
OsAP2/ERF152 正调控水稻抗病性
Positive regulation of disease resistance in rice
[32]
OsERF922 负调控水稻抗病性和耐盐性
Negative regulation of disease resistance and salt tolerance in rice
[33]
OsEBP89 GCC-box 负调控水稻耐旱性
Negative regulation of drought tolerance in rice
[34]
OsERF3/OsAP37 GCC-box 负调控水稻耐旱性
Negative regulation of drought tolerance in rice
[37]
OsDERF1 GCC-box 负调控水稻耐旱性
Negative regulation of drought tolerance in rice
[40]
OsERF109 GCC-box/DRE/CRT 负调控水稻耐旱性
Negative regulation of drought tolerance in rice
[41]
OsERF48 正调控水稻耐旱性
Positive regulation of drought tolerance in rice
[42]
OsERF71 正调控水稻耐旱性
Positive regulation of drought tolerance in rice
[43-45]
OsERF101 正调控水稻耐旱性
Positive regulation of drought tolerance in rice
[45]
OsSERF1 正调控水稻耐盐性
Positive regulation of salt tolerance in rice
[46]
OsAP23 GCC-box 负调控水稻耐盐性
Negative regulation of salt tolerance in rice
[49]
DREB OsDREB1A DRE/CRT 正调控水稻耐冷性
Positive regulation of cold tolerance in rice
[53]
OsDREB1B DRE/CRT 正调控水稻耐冷性
Positive regulation of cold tolerance in rice
[53]
OsDREB1D DRE/CRT/LTRE 正调控拟南芥耐冷和耐盐性
Positive regulation of cold and salt tolerance in Arabidopsis
[54]
OsDREB1E DRE/CRT 受冷胁迫和干旱诱导
Induced by cold and drought stress
[55]
OsDREB1F DRE/CRT 正调控水稻耐盐、耐旱和耐冷性
Positive regulation of salt, drought and cold tolerance in rice
[56]
OsDREB1G DRE/CRT 正调控水稻耐冷性
Positive regulation of cold tolerance in rice
[19]
OsDREB2A DRE/CRT 正调控水稻耐盐和耐旱性
Positive regulation of salt and drought tolerance in rice
[66,70]
亚家族
Subfamily
基因
Gene
结合元件
Binding cis-element
参与胁迫类型
Stresses involved in
参考文献
References
DREB OsDREB2B DRE/CRT 受干旱、盐和冷胁迫诱导
Induced by drought, salt and cold stress
[59]
OsDREB2C 受干旱和盐胁迫诱导
Induced by drought and salt stress
[59]
OsDREB6 DRE/CRT 正调控水稻耐冷性
Positive regulation of cold tolerance in rice
[65]
ARAG1 DRE/CRT 正调控水稻耐旱性
Positive regulation of drought tolerance in rice
[67]
OsAP21 正调控拟南芥耐旱和耐盐性
Positive regulation of drought and salt tolerance in Arabidopsis
[71]
RAV OsRAV2 GT-1 正调控水稻耐盐性
Positive regulation of salt tolerance in rice
[72]
[1] 杨淑华, 巩志忠, 郭岩, 龚继明, 郑绍建, 林荣呈, 杨洪全, 毛龙, 秦峰, 罗利军, 张天真, 储成才, 赖锦盛, 晁代印, 关雪莹, 彭佳师, 黄朝峰, 蒋才富, 王瑜, 杨永青, 施怡婷, 丁杨林, 马亮, 种康. 中国植物应答环境变化研究的过去与未来. 中国科学: 生命科学, 2019, 49:1457-1478.
Yang S H, Gong Z Z, Guo Y, Gong J M, Zheng S J, Lin R C, Yang H Q, Mao L, Qin F, Luo L J, Zhang T Z, Chu C C, Lai J S, Chao D Y, Guan X Y, Peng J S, Huang C F, Jiang C F, Wang Y, Yang Y G, Shi Y T, Ding Y L, Ma L, Chong K. The past and future of research on plant response to environmental changes in China. Sci Sin (Vitae), 2019, 49:1457-1478 (in Chinese with English abstract).
[2] Banerjee A, Roychoudhury A. Differential regulation of defence pathways in aromatic and non-aromatic indica rice cultivars towards fluoride toxicity. Plant Cell Rep, 2019, 38:1217-1233.
doi: 10.1007/s00299-019-02438-6 pmid: 31175394
[3] Zhong Y Q, Chen J J. Ameliorative effects of lanthanum (III) on copper (II) stressed rice (Oryza sativa) and its molecular mechanism revealed by transcriptome profiling. Plant Physiol Biochem, 2020, 152:184-193.
doi: 10.1016/j.plaphy.2020.05.004
[4] Tsubasa S J, Ling Y. ERF gene clusters: working together to regulate metabolism. Trends Plant Sci, 2021, 26:23-32.
doi: 10.1016/j.tplants.2020.07.015 pmid: 32883605
[5] Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40:750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[6] Jofuku K D, Boer B G W D, Okamuro M J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6:1211-1225.
pmid: 7919989
[7] Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140:411-432.
doi: 10.1104/pp.105.073783
[8] Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi S K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290:998-1009.
doi: 10.1006/bbrc.2001.6299
[9] Allen M D, Yamasaki K, Ohme T M, Tateno M, Suzuki M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17:5484-5496.
pmid: 9736626
[10] Rashid M, He G Y, Yang G X, Hussain J, Xu Y. AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evol Bioinform Online, 2012, 8:321-355.
[11] Souad E O, Jaimie S, Ashraf A, Adam C, Hélène L, Han S Y, Bernard B, Serge L, Brian M. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol, 2010, 74:313-326.
doi: 10.1007/s11103-010-9674-8
[12] Nijat I, Mahira N, Wu T, Barry G R. Factors involved in root formation in Medicago truncatula. J Exp Bot, 2007, 58:439-451.
pmid: 17158109
[13] Aukerman M J, Hajime S. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 2003, 15:2730-2741.
pmid: 14555699
[14] Jack K O, Brian C, Raimundo V, Marc V M, Diane J. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins inArabidopsis. Proc Natl Acad Sci USA, 94:7076-7081.
[15] Hu Y X, Wang Y H, Liu X F, Li J Y. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res, 2004, 14:8-15.
doi: 10.1038/sj.cr.7290197
[16] Li C W, Su R C, Cheng C P, Sanjaya, You S J,, Hsieh T H,. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol, 2011, 156:213-27.
doi: 10.1104/pp.111.174268
[17] Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33:751-763.
pmid: 12609047
[18] Sharoni A M, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol, 2011, 52:344-360.
doi: 10.1093/pcp/pcq196 pmid: 21169347
[19] Moon S J, Min M K, Kim J A, Kim D Y, Sun Y I, Ryun K T, Byun M O, Kim B G. Ectopic expression of OsDREB1G, a member of the OsDREB1 subfamily, confers cold stress tolerance in rice. Front Plant Sci, 2019, 10:297.
doi: 10.3389/fpls.2019.00297
[20] Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucl Acids Res, 1999, 27:470-478.
doi: 10.1093/nar/27.2.470
[21] Sun Z M, Zhou M L, Wang D, Tang Y X, Lin M, Wu Y M. Overexpression of the Lotus corniculatus soloist gene LcAP2/ERF107 enhances tolerance to salt stress. Protein Pept Lett, 2016, 23:442-449.
doi: 10.2174/0929866523666160322152914
[22] Kagaya Y, Tsukaho H. Arabidopsis transcription factors, RAV1 and RAV2, are regulated by touch-related stimuli in a dose- dependent and biphasic manner. Genes Genet Syst, 2009, 84:95-99.
doi: 10.1266/ggs.84.95
[23] Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors. Biol Chem, 1998, 379:633-646.
pmid: 9687012
[24] 王友华. 水稻ERF转录激活子DRF2调控叶表蜡质合成. 中国农业科学院硕士学位论文, 北京, 2010.
Wang Y H. Rice ERF Transcriptional Activator DRF2 Regulates Wax Biosynthesis in Leaf Surface. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2010 (in Chinese with English abstract).
[25] Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13:1959-1968.
pmid: 11487705
[26] Aayan M, Sadravi M, Abdollahi M. Reactions of six cultivars of rice (Oryza sativa L.) to three fungal diseases. Archives of Phytopathology and Plant Protection, 2018, 51:879-888.
doi: 10.1080/03235408.2018.1518798
[27] 王军, 赵婕宇, 许扬, 范方军, 朱金燕, 李文奇, 王芳权, 费云燕, 仲维功, 杨杰. 水稻稻瘟病抗性基因Bsr-d1功能标记的开发和利用. 作物学报, 2018, 44:1612-1620.
Wang J, Zhao Y J, Xu Y, Fan F J, Zhu J Y, Li W Q, Wang F Q, Fei Y Y, Zhong W G, Yang J. Development and application of functional markers for rice blast resistance gene Bsr-d1 in rice. Acta Agron Sin, 2018, 44:1612-1620 (in Chinese with English abstract).
[28] 郑凯丽, 纪志远, 郝巍, 唐永超, 韦叶娜, 胡运高, 赵开军, 王春连. 水稻白叶枯病感病相关基因Xig1的分子鉴定及抗病资源创制. 作物学报, 2020, 46:1332-1339.
doi: 10.3724/SP.J.1006.2020.02013
Zheng K L, Ji Z Y, Hao W, Tang Y C, Wei Y N, Hu Y G, Zhao K J, Wang C L. Molecular identification of rice bacterial blight susceptible gene Xig1 and creation of disease resistant resources. Acta Agron Sin, 2020, 46:1332-1339 (in Chinese with English abstract).
[29] Mizoi J, Shinozaki K, Yamaguchi S K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 2012, 1819:86-96.
[30] Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R. Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS One, 2015, 10:e0127831.
[31] Tezuka D, Kawamata A, Kato H, Saburi W, Mor H, Imai R. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. Plant Physiol Biochem, 2019, 135:263-271.
doi: 10.1016/j.plaphy.2018.12.017
[32] Pillai S E, Kumar C, Dasgupta M, Kumar B K, Vungarala S, Patel H K, Sonti R V. Ectopic expression of a cell-wall-degrading enzyme-induced OsAP2/ERF152 leads to resistance against bacterial and fungal infection in Arabidopsis. Phytopathology, 2020, 110:726-733.
doi: 10.1094/PHYTO-10-19-0395-R
[33] Wang F J, Wang C L, Liu P Q, Lei C L, Hao W, Gao Y, Liu Y G, Zhao K J. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One, 2016, 11:e0154027.
[34] Zhang Y, Li J, Chen S J, Ma X S, Wei H B, Chen C, Gao N N, Zou Y Q, Kong D Y, Li T F, Liu Z C, Yu S W, Luo L J. An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol Genet Genom, 2020, 295:941-956.
doi: 10.1007/s00438-020-01669-7
[35] Belda-Palazón B, Adamo M, Valerio C, Ferreira L J, Confraria A, Reis-Barata D, Rodrigues A, Meyer C, Rodriguez P L, Baena-González E. A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth. Nat Plants, 2020, 6:1345-1353.
doi: 10.1038/s41477-020-00778-w pmid: 33077877
[36] Filipe O, De Vleesschauwer D, Haeck A, Demeestere K, Höfte M. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice. Sci Rep, 2018, 8:3864.
doi: 10.1038/s41598-018-22101-6
[37] Zhang H, Zhang J, Quan R, Pan X, Wan L, Huang R. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta, 2013, 237:1443-1451.
doi: 10.1007/s00425-013-1852-x
[38] Ramegowda V, Basu S, Krishnan A, Pereira A. Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol, 2014, 166:1634-1645.
doi: 10.1104/pp.114.248203
[39] Yaish M W, El-Kereamy A, Zhu T, Beatty P H, Good A G, Bi Y M, Rothstein S J. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet, 2010, 6:e1001098.
[40] Wan L Y, Zhang J F, Zhang H W, Zhang Z J, Quan R D, Zhou S R, Huang R F. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One, 2011, 6:e25216.
[41] Yu Y W, Yang D X, Zhou S R, Gu J T, Wang F R, Dong J G, Huang R F. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma, 2017, 254:401-408.
doi: 10.1007/s00709-016-0960-4
[42] Jung H, Chung P J, Park S H, Redillas M, Kim Y S, Suh J W, Kim J K. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J, 2017, 15:1295-1308.
doi: 10.1111/pbi.2017.15.issue-10
[43] Lee D K, Jung H, Jang G, Jeong J S, Kim Y S, Ha S H, Do C Y, Kim J K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol, 2016, 172:575-588.
doi: 10.1104/pp.16.00379
[44] Ahn H, Jung I, Shin S J, Park J, Rhee S, Kim J K, Jung W, Kwon H B, Kim S. Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice. Front Plant Sci, 2017, 8:1044.
doi: 10.3389/fpls.2017.01044
[45] Jin Y, Pan W Y, Zheng X F, Cheng X, Liu M M, Ma H, Ge X C. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Mol Biol, 2018, 98:51-65.
doi: 10.1007/s11103-018-0762-5
[46] Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, San S B, Guiderdoni E, Schippers J H, Mueller-Roeber B. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25:2115-2131.
doi: 10.1105/tpc.113.113068
[47] Serra T S, Figueiredo D D, Cordeiro A M, Almeida D M, Tiago L, Isabel A A, Alvaro S, Lisete F, Bruno C M, Oliveira M M, Nelson J M. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol, 2013, 82:439-455.
doi: 10.1007/s11103-013-0073-9
[48] Liu D, Chen X, Liu J, Ye J, Guo Z. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63:3899-3911.
doi: 10.1093/jxb/ers079
[49] Zhuang J, Jiang H H, Wang F, Peng R H, Yao Q H, Xiong A S. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis. Plant Mol Biol Rep, 2013, 31:1336-1345.
doi: 10.1007/s11105-013-0610-3
[50] 徐学中, 汪婷, 万旺, 李思慧, 朱国辉. 水稻ABA生物合成基因OsNCED3响应干旱胁迫. 作物学报, 2018, 44:24-31.
Xu X Z, Wang T, Wan W, Li S H, Zhu G H. ABA biosynthesis gene OsNCED3 confers drought stress tolerance in rice. Acta Agron Sin, 2018, 44:24-31 (in Chinese with English abstract).
[51] Yu Y, Liu A L, Duan X B, Wang S T, Sun X L, Duan-mu H Z, Zhu D, Chen C, Cao L, Xiao J L, Li Q, Nisa Z U, Zhu Y M, Ding X D. GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis. Planta, 2016, 244:681-698.
doi: 10.1007/s00425-016-2532-4
[52] Yu Y, Duan X B, Ding X D, Chen C, Zhu D, Yin K D, Cao L, Song X W, Zhu P H, Li Q, Nisa Z U, Yu J Y, Du J Y, Song Y, Li H Q, Liu B D, Zhu Y M. A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. Plant Mol Biol, 2017, 94:509-530.
doi: 10.1007/s11103-017-0623-7
[53] Challam C, Ghosh T, Rai M, Tyagi W. Allele mining across DREB1A and DREB1B in diverse rice genotypes suggest a highly conserved pathway inducible by low temperature. J Genet, 2015, 94:231-238.
doi: 10.1007/s12041-015-0507-z
[54] Zhang Y, Chen C, Jin X F, Xiong A S, Peng R H, Hong Y H, Yao Q H, Chen J M. Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep, 2009, 42:486-492.
pmid: 19712584
[55] Mao D, Chen C. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PLoS One, 2012, 7:e47275.
[56] Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol, 2008, 67:589-602.
doi: 10.1007/s11103-008-9340-6
[57] Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P. Over- expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008, 30:2191-2198.
doi: 10.1007/s10529-008-9811-5
[58] Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33:751-763.
pmid: 12609047
[59] Herath V. Small family, big impact: in silico analysis of DREB2 transcription factor family in rice. Comput Biol Chem, 2016, 65:128-139.
doi: 10.1016/j.compbiolchem.2016.10.012
[60] Krishnaraj T, Sekar D, Subramanian S, Kulandaivelu K, Senguttuvan M, Villianur I H. Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants. Plant Mol Biol Rep, 2015, 33:347-357.
doi: 10.1007/s11105-014-0799-9
[61] Agarwal M, Hao Y J, Kapoor A, Dong C H, Fu J H, Zheng X W, Zhu J K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem, 2006, 281:37636-37645.
[62] He Y, Li Y, Cui L, Xie L, Zheng C, Zhou G, Zhou J, Xie X. Phytochrome B negatively affects cold tolerance by regulating OsDREB1 gene expression through phytochrome interacting factor-like protein OsPIL16 in rice. Front Plant Sci, 2016, 7:1963.
[63] Lee S C, Kim S H, Kim S R. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Exp Bot, 2013, 56:115-121.
[64] Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genom, 2010, 283:185-196.
doi: 10.1007/s00438-009-0506-y
[65] Ke Y G, Yang Z J, Yu S W, Li T F, Luo L J. Characterization of OsDREB6 responsive to osmotic and cold stresses in rice. Ceram Int, 2016, 42:9264-9269.
doi: 10.1016/j.ceramint.2016.03.034
[66] Cui M, Zhang W J, Zhang Q, Xu Z Q, Zhu Z G, Duan F P, Wu R. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem, 2011, 49:1384-1391.
doi: 10.1016/j.plaphy.2011.09.012
[67] Zhao L F, Hu Y B, Chong R, Wang T. ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Ann Bot, 2010, 105:401-409.
doi: 10.1093/aob/mcp303
[68] Jin X, Xue Y, Wang R, Xu R, Bian L, Zhu B, Han H, Peng R, Yao Q. Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep, 2013, 40:1743-1752.
doi: 10.1007/s11033-012-2228-1
[69] Kumar M, Lee S C, Kim J Y, Kim S J, Aye S S, Kim S R. Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice(Oryza sativa L.). J Exp Bot, 2014, 57:383-393.
[70] Mallikarjuna G, Mallikarjuna K, Reddy M K, Kaul T. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett, 2011, 33:1689-1697.
doi: 10.1007/s10529-011-0620-x pmid: 21528404
[71] Zhang X X, Tang Y J, Ma Q B, Yang C Y, Mu Y H, Suo H C, Luo L H, Hai N. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS One, 2017, 8:e83011.
[72] Duan Y B, Li J, Qin R Y, Xu R F, Li H, Yang Y C, Ma H, Li L, Wei P C, Yang J B. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol, 2016, 90:49-62.
doi: 10.1007/s11103-015-0393-z
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[15] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!