作物学报 ›› 2022, Vol. 48 ›› Issue (2): 292-303.doi: 10.3724/SP.J.1006.2022.12013
杨谨1,2(), 白爱宁3, 白雪3, 陈娟3, 郭林1, 刘春明1,3,*()
YANG Jin1,2(), BAI Ai-Ning3, BAI Xue3, CHEN Juan3, GUO Lin1, LIU Chun-Ming1,3,*()
摘要:
从由化学诱变剂甲基磺酸乙酯(ethylmethane sulfonate, EMS)处理的粳稻品种中花11突变体库中, 筛选到一个可稳定遗传的胚胎和胚乳发育缺陷的突变体, 命名为embryo and endosperm defective 1 (eed1)。eed1籽粒千粒重、颖果的粒长、粒宽、粒厚、萌发率、总淀粉、直链淀粉和贮藏蛋白系列指标较野生型均显著降低。eed1颖果严重皱缩, 且胚乳呈粉质。利用扫描电镜观察发现, 与中花11相比, eed1胚乳中淀粉粒排列疏松, 多以单一、分散的淀粉粒存在, 且呈近似球形。eed1胚胎结构异常, 部分颖果未见有胚胎分化的痕迹。qRT-PCR发现, eed1胚乳中参与淀粉和贮藏蛋白合成的大部分基因表达下调。利用eed1与籼稻南京6号杂交得到的F2分离群体进行基因定位分析, 将EED1定位于9号染色体长臂672 kb的范围内, 包含114个开放读码框。本研究为进一步解析EED1基因调控水稻胚胎和胚乳发育的机制奠定了基础。
[1] | Nallamilli B R R, Zhang J, Mujahid H, Malone B M, Bridges S M, Peng Z H. Polycomb group gene OsFIE2 regulates rice(Oryza sativa) seed development and grain filling via a mechanism distinct from Arabidopsis. PLoS Genet, 2013,9:e1003322. |
[2] | Wu X B, Liu J X, Li D Q, Liu C M. Rice caryopsis development: I. Dynamic changes in different cell layers. J Integr Plant Biol, 2016,58:772-785. |
[3] | Itoh J I, Nonomura K I, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plant development: from zygote to spikelet. Plant Cell Physiol, 2005,46:23-47. |
[4] | Mizutani M, Naganuma T, Tsutsumi K I, Saitoh Y. The syncytium-specific expression of the Orysa; KRP3 CDK inhibitor: implication of its involvement in the cell cycle control in the rice (Oryza sativa L.) syncytial endosperm. J Exp Bot, 2010,61:791-798. |
[5] | 刘春明, 程佑发, 刘永秀, 孙蒙祥, 薛红卫. 植物种子发育的分子机理. 中国基础科学, 2016,18:1-13. |
Liu C M, Cheng Y F, Liu Y X, Sun M X, Xue H W. Molecular mechanisms of seed development in plants. China Basic Sci, 2016,18:1-13 (in Chinese). | |
[6] | 黄小荣. OsGCD1在雄配子体形成, 胚胎模式建成与胚乳发育中的功能研究. 武汉大学博士学位论文, 湖北武汉, 2017. |
Huang X R. Functional Analysis of OsGCD1 in Male Gametophyte Formation, Embryo Pattern Formation and Endosperm Development of Rice (Oryza sativa). PhD Dissertation of Wuhan University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract). | |
[7] | Noriko K, Asuka N, Naoki S, Eriko T, Yasuo N, Hidemi K, Makoto M. Rice globular embryo 4 (gle4) mutant is defective in radial pattern formation during embryogenesis. Plant Cell Physiol, 2003,44:875-883. |
[8] | Itoh J I, Sato Y, Sato Y, Hibara K I, Shimizu-Sato S, Kobayashi H, Takehisa H, Sanguinet K A, Namiki N, Nagamura Y. Genome-wide analysis of spatiotemporal gene expression patterns during early embryogenesis in rice. Development, 2016,143:1217-1227. |
[9] | Huang X R, Peng X B, Sun M X. OsGCD1 is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development. New Phytol, 2017,215:1039-1058. |
[10] | Lopes M A, Larkins B A. Endosperm origin, development, and function. Plant Cell, 1993,5:1383-1399. |
[11] | Liu J X, Wu X B, Yao X F, Yu R, Larkin P J, Liu C M. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proc Natl Acad Sci USA, 2018,115:11327-11332. |
[12] | Wu X B, Liu J X, Li D Q, Liu C M. Rice caryopsis development: II. Dynamic changes in the endosperm. J Integr Plant Biol, 2016,58:786-798. |
[13] | Hara T, Katoh H, Ogawa D, Kagaya Y, Sato Y, Kitano H, Nagato Y, Ishikawa R, Ono A, Kinoshita T, Takeda S, Hattori T. Rice SNF2 family helicase ENL1 is essential for syncytial endosperm development. Plant J, 2015,81:1-12. |
[14] | 韩小花. 水稻籽粒中控制淀粉合成关键基因OsPDIL1-1的图位克隆及功能分析. 南京农业大学博士学位论文, 江苏南京, 2011. |
Han X H. Map-based Cloning and Functional Analysis of a Key Gene OsPDIL1-1 Involved in the Starch Biosynthesis in Rice. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 (in Chinese with English abstract). | |
[15] | Wei X J, Jiao G A, Lin H Y, Sheng Z H, Shao G N, Xie L H, Tang S Q, Xu Q G, Hu P S. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development. J Integr Plant Biol, 2017,59:134-153. |
[16] | Ryoo N, Yu C, Park C S, Baik M Y, Park I M, Cho M H, Bhoo S H, An G, Hahn T R, Jeon J S. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice( Oryza sativa L.). Plant Cell Rep, 2007,26:1083-1095. |
[17] | Wang W, Wei X, Jiao G, Chen W, Wu Y, Sheng Z, Hu S, Xie L, Wang J, Tang S, Hu P. GBSS-BINDING PROTEIN, encoding a CBM48 domain containing protein, affects rice quality and yield. J Integr Plant Biol, 2019,62:948-966. |
[18] | Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot, 2013,64:3453-3466. |
[19] | 刘巧泉, 周丽慧, 王红梅, 顾铭洪. 水稻种子贮藏蛋白合成的分子生物学研究进展. 分子植物育种, 2008,6:1-15. |
Liu Q Q, Zhou L H, Wang H M, Gu M H. Advances on biosynthesis of rice seed storage proteins in molecular biology. Mol Plant Breed, 2008,6:1-15 (in Chinese with English abstract). | |
[20] | Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice. Plant J, 2009,59:908-920. |
[21] | She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K I, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURY ENDOSPERM 2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010,22:3280-3294. |
[22] | Xing Y Z, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442. |
[23] | An L, Tao Y, Chen H, He M J, Xiao F, Li G H, Ding Y F, Liu Z H. Embryo-endosperm interaction and its agronomic relevance to rice quality. Front Plant Sci, 2020,11:587641. |
[24] | Lafon-Placette C, Köhler C. Embryo and endosperm, partners in seed development. Curr Opin Plant Biol, 2014,17:64-69. |
[25] | Hehenberger E, Kradolfer D, Köhler C. Endosperm cellularization defines an important developmental transition for embryo development. Development, 2012,139:2031-2039. |
[26] | Pignocchi C, Minns G E, Nesi N, Koumproglou R, Kitsios G, Benning C, Lloyd C W, Doonan J H, Hills M J. ENDOSPERM DEFECTIVE 1 is a novel microtubule-associated protein essential for seed development in Arabidopsis. Plant Cell, 2009,21:90-105. |
[27] | Nagasawa N, Hibara K I, Heppard E P, Vander Velden K A, Luck S, Beatty M, Nagato Y, Sakai H. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant J, 2013,75:592-605. |
[28] | Yang W B, Gao M J, Yin X, Liu J Y, Xu Y H, Zeng L J, Li Q, Zhang S B, Wang J M, Zhang X M, He Z H. Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome P450. Mol Plant, 2013,6:1945-1960. |
[29] | Xiong H X, Wang W, Sun M X. Endosperm development is an autonomously programmed process independent of embryogenesis. Plant Cell, 2021, doi: https://doi.org/10.1093/plcell/koab007. |
[30] | Zhang L, Qi Y Z, Wu M M, Zhao L, Zhao Z C, Lei C L, Hao Y Y, Yu X W, Sun Y L, Zhang X, Guo X P, Ren Y L, Wan J M. Mitochondrion-targeted PENTATRICOPEPTIDE REPEAT 5 is required for cis-splicing of nad4 intron 3 and endosperm development in rice. Crop J, 2020,9:282-296. |
[31] | Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol, 1997,35:205-218. |
[32] | Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994,6:271-282. |
[33] | Ren Y L, Wang Y H, Pan T, Wang Y L, Wang Y F, Gan L, Wei Z Y, Wang F, Wu M M, Jing R N, Wang J C, Wan G X, Bao X H, Zhang B L, Zhang P C, Zhang Y, Ji Y, Lei C L, Zhang X, Cheng Z J, Lin Q B, Zhu S S, Zhao Z C, Wang J, Wu C Y, Qiu L J, Wang H Y, Wan J M. GPA5 encodes a Rab5a effector required for post-golgi trafficking of rice storage proteins. Plant Cell, 2020,32:758-777. |
[34] | Zhao J, Qin J J, Song Q, Sun C Q, Liu F X. Combining QTL mapping and expression profile analysis to identify candidate genes of cold tolerance from Dongxiang common wild rice (Oryza rufipogon Griff.). J Integr Agric, 2016,15:1933-1943. |
[35] | Ohdan T, Francisco P B J, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot, 2005,56:3229-3244. |
[36] | 梁子英, 刘芳. 实时荧光定量PCR技术及其应用研究进展. 现代农业科技, 2020, (6):1-3. |
Lang Z Y, Liu F. Research progress on real-time quantitative PCR technology and its application. Mod Agric Sci Technol, 2020, (6):1-3 (in Chinese with English abstract). | |
[37] | 李景芳, 田云录, 刘喜, 刘世家, 陈亮明, 江玲, 张文伟, 徐大勇, 王益华, 万建民. 鸟苷酸激酶OsGK1对水稻种子发育至关重要. 中国水稻科学, 2018,32:415-426. |
Li J F, Tian Y L, Liu X, Liu S J, Chen M L, Jiang L, Zhang W W, Xu D Y, Wang Y H, Wan J M. The guanylate kinase OsGK1 is essential for seed development in rice. Chin J Rice Sci, 2018,32:415-426 (in Chinese with English abstract). | |
[38] | 杜溢墨, 潘天, 田云录, 刘世家, 刘喜, 江玲, 张文伟, 王益华, 万建民. 水稻粉质皱缩胚乳突变体fse4的表型分析与基因克隆. 中国水稻科学, 2019,33:499-512. |
Du Y M, Pan T, Tian Y L, Liu S J, Liu X, Jiang L, Zhang W W, Wang Y H, Wan J M. Phenotypic analysis and gene cloning of rice floury endosperm mutant fse4. Chin J Rice Sci, 2019,33:499-512 (in Chinese with English abstract). | |
[39] | Hu T T, Tian Y L, Zhu J P, Wang Y L, Jing R N, Lei J, Sun Y L, Yu Y F, Li J F, Chen X L, Zhu X, Hao Y Y, Liu L L, Wang Y H, Wan J M. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. Plant Cell Rep, 2018,37:1667-1679. |
[40] | Wu M W, Zhao H, Zhang J D, Guo L, Liu C M. RADICLELESS 1 (RL1)-mediated nad4 intron 1 splicing is crucial for embryo and endosperm development in rice(Oryza sativa L.). Biochem Biophys Res Commun, 2020,523:220-225. |
[41] | 金田蕴, 李辉, 郭涛, 刘晓璐, 苏宁, 吴赴清, 万建民. 水稻稳定高垩白率突变体的获得与理化特性分析. 作物学报, 2010,36:121-132. |
Jin T Y, Li H, Guo T, Liu X L, Su N, Wu F Q, Wan J M. Analysis of physiological and biochemical characteristics of six mutants with stable high percentage of chalkiness in rice grains. Acta Agron Sin, 2010,36:121-132 (in Chinese with English abstract). | |
[42] | Teng X, Zhong M S, Zhu X P, Wang C M, Ren Y L, Wang Y L, Zhang H, Jiang L, Wang D, Hao Y Y, Wu M M, Zhu J P, Zhang X, Guo X P, Wang Y H, Wan J M. FLOURY ENDOSPERM 16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. Plant Biotechnol J, 2019,17:1914-1927. |
[43] | You X M, Zhang W W, Hu J L, Jing R N, Cai Y, Feng Z M, Kong F, Zhang J, Yan H G, Chen W W, Chen X G, Ma J, Tang X J, Wang P, Zhu S S, Liu L L, Jiang L, Wan J M. FLOURY ENDOSPERM 15 encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm. Plant Cell Rep, 2019,38:345-359. |
[44] | Zhong M S, Liu X, Liu F, Ren Y L, Wang Y L, Zhu J P, Teng X, Duan E, Wang F, Zhang H, Wu M M, Hao Y Y, Zhu X P, Jing R N, Guo X P, Jiang L, Wang Y H, Wan J M. FLOURY ENDOSPERM 12 encoding Alanine Aminotransferase 1 regulates carbon and nitrogen metabolism in rice. J Plant Biol, 2019,62:61-73. |
[45] | Wang H H, Huang Y C, Xiao Q, Huang X, Li C S, Gao X Y, Wang Q, Xiang X L, Zhu Y D, Wang J C, Wang W Q, Larkins B A, Wu Y R. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat Commun, 2020,11:5346. |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[9] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[10] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|