作物学报 ›› 2022, Vol. 48 ›› Issue (2): 280-291.doi: 10.3724/SP.J.1006.2022.14046
黄莉*(), 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳
HUANG Li*(), CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang
摘要:
花生是我国重要的油料作物和经济作物, 目前国内花生的产量远远不能满足消费者的所需, 进一步提高花生单产是解决花生生产供不应求的重要途径。花生种子大小相关性状是花生的重要农艺性状, 对提高花生单产至关重要。本文综述了植物种子大小的调控途径以及近年来花生分子标记、遗传图谱构建、种子大小相关性状QTL定位研究中取得的进展, 探讨了目前花生种子大小相关性状研究中面临的挑战和机遇, 对花生产量遗传改良进行了展望。
[1] | 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020,42:161-166. |
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020,42:161-166 (in Chinese with English abstract). | |
[2] | 万书波, 张智猛, 郭峰, 成波, 杨吉顺, 李尚霞. 花生优质高效生产农机农艺融合的必要性与发展趋势. 花生学报, 2013,42(4):1-6. |
Wan S B, Zhang Z M, Guo F, Cheng B, Yang J S, Li S X. The necessity and trend of the combination of agricultural machinery and agronomy in peanut production. J Peanut Sci, 2013,42(4):1-6 (in Chinese with English abstract). | |
[3] | Mizukami Y, Fischer R L. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA, 2000,97:942-947. |
[4] | Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol, 2003,131:1661-1670. |
[5] | Haig D. Kin conflict in seed development: an interdependent but fractious collective. Annu Rev Cell Dev Biol, 2013,29:189-211. |
[6] | Bleckmann A, Alter S, Dresselhaus T. The beginning of a seed: regulatory mechanisms of double fertilization. Front Plant Sci, 2014,5:452. |
[7] | Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res, 2006,119:37-42. |
[8] | Breuninger H, Lenhard M. Control of tissue and organ growth in plants. Curr Top Dev Biol, 2010,91:185. |
[9] | Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584. |
[10] | Song X, Huang W, Shi M, Zhu M, Lin H. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630. |
[11] | Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008,40:1023-1028. |
[12] | Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43:1266-1269. |
[13] | Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shang-Guan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y Q, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016,48:447-456. |
[14] | Santner A, Calderonvillalobos L, Estelle M. Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol, 2009,5:301-307. |
[15] | Okushima Y, Mitina I, Quach H L, Theologis A. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J, 2005,43:29-46. |
[16] | Schruff M C, Spielman M, Tiwari S, Adams S, Fenby N, Scott R J. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 2006,133:251-261. |
[17] | Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015,112:5123-5132. |
[18] | Zhu J, Sae-Seaw J, Wang Z. Brassinosteroid signalling. Development, 2013,140:1615-1620. |
[19] | Riefler M, Novak O, Strnad M, Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 2006,18:40-54. |
[20] | Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster G T S, Genschik P. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol, 2009,19:1188-1193. |
[21] | Silverstone A L, Jung H S, Dill A, Kawaide H, Kamiya Y, Sun T. Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell, 2001,13:1555-1565. |
[22] | Luo M, Dennis E S, Berger F, Peacock W J, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat(LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA, 2005,102:17531-17536. |
[23] | Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell, 2009,21:106-117. |
[24] | Li Y, Zheng L, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev, 2008,22:1331-1336. |
[25] | Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan M W, Gao F, Li Y. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell, 2013,25:3347-3359. |
[26] | Zhang Y, Du L, Xu R, Cui R, Hao J, Sun C, Li Y. Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana. Plant Cell, 2015,27:620-632. |
[27] | Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y, Li C, Li Y. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. Plant Cell, 2014,26:665-677. |
[28] | Hussain Q, Shi J, Scheben A, Zhan J, Wang X, Liu G, Yan G, King G J, Edwards D, Wang H. Genetic and signalling pathways of dry fruit size: targets for genome editing-based crop improvement. Plant Biotechnol J, 2020,18:1124-1140. |
[29] | Kochert G, Halward T, Branch W D, Simpson C E. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet, 1991,81:565-570. |
[30] | Hopkins M, Casa A, Wang T, Mitchell S, Dean R, Kochert G D, Kresovich S. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci, 1999,39:1243-1247. |
[31] | He G, Meng R, Newman M, Gao G, Pittman R, Prakash C S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2003,3:3. |
[32] | Naito Y, Suzuki S, Iwata Y, Kuboyama T. Genetic diversity and relationship analysis of peanut germplasm using SSR markers. Breed Sci, 2008,58:293-300. |
[33] | Wang H, Penmetsa R V, Yuan M, Gong L, Zhao Y, Guo B, Farmer A D, Rosen B D, Gao J, Isobe S, Bertioli D J, Varshney R K, Cook D R, He G. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2012,12:10. |
[34] | Proite K, Leal-Bertioli S C M, Bertioli D J, Moretzsohn M C, Da Silva F R, Martins N F, Guimaraes P M. ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol, 2007,7:7. |
[35] | Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S. Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed, 2012,30:125-138. |
[36] | Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang Q, Li Y. De novo assembly and characterization of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics, 2012,13:90. |
[37] | Huang L, Wu B, Zhao J, Li H, Chen W, Zheng Y, Ren X, Chen Y, Zhou X, Lei Y, Liao B, Jiang H. Characterization and transferable utility of microsatellite markers in the wild and cultivated Arachis species. PLoS One, 2016,11:e0156633. |
[38] | Luo H, Xu Z, Li Z, Li X, Lyu J, Ren X, Huang L, Zhou X, Chen Y, Yu J, Chen W, Lei Y, Liao B, Jiang H. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2017,130:1635-1648. |
[39] | Lu Q, Hong Y, Li S, Liu H, Li H, Zhang J, Lan H, Liu H, Li X, Wen S, Zhou G, Varshney R K, Jiang H, Chen X, Liang X. Genome-wide identification of microsatellite markers from cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2019,20:799. |
[40] | Pandey M K, Agarwal G, Kale S M, Clevenger J, Nayak S N, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya H D, Vishwakarma M K, Leal-Bertioli S, Liang X, Bertioli D J, Guo B, Jackson S A, Ozias-Akins P, Varshiney R K. Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep, 2017,7:40577. |
[41] | Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J, 2020,18:1457-1471. |
[42] | Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C, Kozik A, Kim K D, Burow M D, Varshney R K, Wang X, Zhang X, Barkley N, Guimarães P M, Isobe S, Guo B, Liao B, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C, Xun X, Jackson S A, Michelmore R, Ozias-Akins P. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016,48:438-446. |
[43] | Chen X, Li H, Pandey M K, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan A W, Zhu F, Zhang X, Pan L, Pierce G J, Zhou G, Krishnamohan K A, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G Q, Sharma S, Chen N, Liu H, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z J, Paterson A H, Wang S, Liang X, Varshney R K, Yu S. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis and allergens. Proc Natl Acad Sci USA, 2016,113:6785-6790. |
[44] | Lu Q, Li H, Hong Y, Zhang G, Wen S, Li X, Zhou G, Li S, Liu H, Liu H, Liu Z, Varshney R K, Chen X, Liang X. Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Front Plant Sci, 2018,9:604. |
[45] | Yin D, Ji C, Ma X, Li H, Zhang W, Li S, Liu F, Zhao K, Li F, Li K, Ning L, He J, Wang Y, Zhao F, Xie Y, Zheng H, Zhang X, Zhang Y, Zhang J. Genome of an allotetraploid wild peanut Arachis monticola: a de novo assembly. Gigascience, 2018, 7: giy066. |
[46] | Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019,51:877-884. |
[47] | Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan H, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan S A, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R, Peng Z, Wang S, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C, He G, Zhao Y, Wang C, Kavikishor P B, Pan R L, Paterson A H, Wang X, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019,51:865-876. |
[48] | Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey M K, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, Wang X, Siddique K H M, Liu ZJ, Paterson A H, Varshney R K, Liang X. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant, 2019,12:920-934. |
[49] | Zheng Z, Sun Z, Fang Y, Qi F, Liu H, Miao L, Du P, Shi L, Gao W, Han S, Dong W, Tang F, Cheng F, Hu H, Huang B, Zhang X. Genetic diversity, population structure, and botanical variety of 320 global peanut accessions revealed through tunable genotyping-by-sequencing. Sci Rep, 2018,8:14500. |
[50] | Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics, 2014,15:351. |
[51] | Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018,9:827. |
[52] | Wang L, Zhou X, Ren X, Huang L, Luo H, Chen Y, Chen W, Liu N, Liao B, Lei Y, Yan L, Shen J, Jiang H. A major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut Yuanza 9102 derived population. Front Genet, 2018,9:652. |
[53] | Hu X, Zhang S, Miao H, Cui F, Shen Y, Yang W, Xu T, Chen N, Chi X, Zhang Z, Chen J. High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep, 2018,8:5479. |
[54] | Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol, 2019,19:537. |
[55] | Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H, Chen Y, Chen W, Lei Y, Huang Y, Liao B, Jiang H. High resolution mapping of a major and consensus quantitative trait locus for oil content to a ~0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet, 2020,133:37-49. |
[56] | Khan S A, Chen H, Deng Y, Chen Y, Zhang C, Cai T, Ali N, Mamadou G, Xie D, Guo B, Varshney R K, Zhuang W. High- density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut(Arachis hypogaea). Theor Appl Genet, 2020,133:2239-2257. |
[57] | Zhou X, Xia Y, Liao J, Liu K, Li Q, Dong Y, Ren X, Chen Y, Huang L, Liao B, Lei Y, Yan L, Jiang H. Quantitative trait locus analysis of late leaf spot resistance and plant-type-related traits in cultivated peanut (Arachis hypogaea L.) under multi-environments. PLoS One, 2016,11:e0166873. |
[58] | Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442. |
[59] | Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics, 2001,159:823-837. |
[60] | Varshney R K, Bertioli D J, Moretzsohn M C, Vadea V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet, 2009,118:729-739. |
[61] | Ravi K, Vadez V, Isobe S, Mir R R, Guo Y, Nigam S N, Gowda M V C, Radhakrishnan T, Bertioli D J, Knapp S J, Varshney R K. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2011,122:1119-1132. |
[62] | Khedikar Y P, Gowda M V, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010,121:971-984. |
[63] | Sujay V, Gowda M, Pandey M, Bhat R, Khedikar Y, Nadaf H, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012,30:773-788. |
[64] | Gautami B, Pandey M, Vadez V, Nigam S, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda M V C, Narasu M L, Hoisington D A, Knapp S J, Varshney R K. Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012,30:757-772. |
[65] | Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012,12:80. |
[66] | Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang M L, Zhang X, Holbrook C C, Ozias-Akins P, Guo B. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet, 2012,124:653-664. |
[67] | Pandey M K, Wang M L, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley N A, Wang J, Holbrook C C, Culbreath A K, Varshney R K, Guo B. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut(Arachis hypogaea L.). BMC Genet, 2014,15:133. |
[68] | Khera P, Pandey M K, Wang H, Feng S, Qiao L, Culbreath A K, Kale S, Wang J, Holbrook C C, Zhuang W, Varshney R K, Guo B. Mapping quantitative trait loci of resistance to tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS One, 2016,11:e0158452. |
[69] | Pandey M K, Wang H, Khera P, Vishwakarma M K, Kale S M, Culbreath A K, Holbrook C C, Wang X, Varshney R K, Guo B. Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front Plant Sci, 2017,8:25. |
[70] | Agarwal G, Clevenger J, Pandey M K, Wang H, Shasidhar Y, Chu Y, Fountain J C, Choudhary D, Culbreath A K, Liu X, Huang G, Wang X, Deshmukh R, Holbrook C C, Bertioli D J, Ozias-Akins P, Jackson S A, Varshney R K, Guo B. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J, 2018,16:1954-1967. |
[71] | Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015,128:1103-1115. |
[72] | Huang L, Ren X, Wu B, Li X, Chen W, Zhou X, Chen Y, Pandey M K, Jiao Y, Luo H, Lei Y, Varsheney R K, Liao B, Jiang H. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep, 2016,6:39478. |
[73] | Chen W, Jiao Y, Cheng L, Huang L, Liao B, Tang M, Ren X, Zhou X, Chen Y, Jiang H. Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet, 2016,17:25. |
[74] | Chen Y, Ren X, Zheng Y, Zhou X, Huang L, Yan L, Jiao Y, Chen W, Huang S, Wan L, Lei Y, Liao B, Huai D, Wei W, Jiang H. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut ( Arachis hypogaea L.). Mol Breed, 2017,37:17. |
[75] | Shasidhar Y, Vishwakarma M K, Pandey M K, Janila P, Variath M T, Manohar S S, Nigam S N, Guo B, Varshney R K. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci, 2017,8:794. |
[76] | Han S, Yuan M, Clevenger J P, Li C, Hagan A, Zhang X, Chen C, He G. A SNP-based linkage map revealed QTLs for resistance to early and late leaf spot diseases in peanut ( Arachis hypogaea L.). Front Plant Sci, 2018,9:1012. |
[77] | Li L, Yang X, Cui S, Meng X, Mu G, Hou M, He M, Zhang H, Liu L, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci, 2019,10:745. |
[78] | Modia S M, Joshi B, Gangurde S S, Thirumalaisamy P P, Mishra G P, Narandrakumar D, Soni P, Rathnakumar A L, Dobaria J R, Sangh C, Chitikineni A, Chanda S V, Pandey M K, Varshney R K, Thankappan R. Genotyping by sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut. Theor Appl Genet, 2019,132:1001-1016. |
[79] | Liu H, Sun Z, Zhang X, Qin L, Qi F, Wang Z, Du P, Xu J, Zhang Z, Han S, Li S, Gao M, Zhang L, Cheng Y, Zheng Z, Huang B, Dong W. QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing. BMC Plant Biol, 2020,20:249. |
[80] | 曾新颖, 郭建斌, 赵姣姣, 陈伟刚, 邱西克, 黄莉, 罗怀勇, 周小静, 姜慧芳, 黄家权. 花生籽仁大小相关性状QTL定位. 作物学报, 2019,45:1200-1207. |
Zeng X Y, Guo J B, Zhao J J, Chen W G, Qiu X K, Huang L, Luo H Y, Zhou X J, Jiang H F, Huang J Q. Identification of QTL related to seed size in peanut (Arachis hypogaea L.). Acta Agron Sin, 2019,45:1200-1207 (in Chinese with English abstract). | |
[81] | Mondal S, Badigannavar A M. Identification of major consensus QTLs for seed size and minor QTLs for pod traits in cultivated groundnut ( Arachis hypogaea L.). 3 Biotech, 2019,9:347. |
[82] | Holbrook C C, Anderson W F, Pittman R N. Selection of a core collection from the US germplasm collection of peanut. Crop Sci, 1993,33:859-861. |
[83] | Upadhyaya H D, Ortiz R, Bramel P J, Singh S. Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Resour Crop Evol, 2003,50:139-148. |
[84] | 姜慧芳, 任小平, 廖伯寿, 黄家权, 陈本银. 中国花生核心种质的建立. 武汉植物学研究, 2007,25:289-293. |
Jiang H F, Ren X P, Liao B S, Huang J Q, Chen B Y. Establishment of peanut core collection in China. J Wuhan Bot Res, 2007,25:289-293 (in Chinese with English abstract). | |
[85] | Holbrook C C, Dong W. Development and evaluation of a mini core collection for the US peanut germplasm collection. Crop Sci, 2005,45:1540-1544. |
[86] | Upadhyaya H D, Bramel P J, Ortiz R, Sube S. Developing a mini core of peanut for utilization of genetic resources. Crop Sci, 2002,42:2150-2156. |
[87] | 姜慧芳, 任小平, 黄家权, 廖伯寿, 雷永. 中国花生小核心种质的建立及高油酸基因源的发掘. 中国油料作物学报, 2008,30:294-299. |
Jiang H F, Ren X P, Huang J Q, Liao B S, Lei Y. Establishment of peanut mini core collection in China and exploration of new resource with high oleat. Chin J Oil Crop Sci, 2008,30:294-299 (in Chinese with English abstract). | |
[88] | Jiang H, Ren X, Chen Y, Huang L, Zhou X, Huang J, Froenicke L, Yu J, Guo B, Liao B. Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Plant Genet Resour, 2013,11:77-83. |
[89] | Pandey M K, Upadhyaya H D, Rathore A, Vadez V, Sheshshayee M, Sriswathi M, Govil M, Kumar A, Gowda M V C, Sharma S, Hamidou F, Kumar V A, Khera P, Bhat R S, Khan A W, Singh S, Li H, Monyo E, Nadaf H L, Mukri G, Jackson S A, Guo B, Liang X, Varshney R K. Genomewide association studies for 50 agronomic traits in peanut using the ‘Reference Set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One, 2014,9:e105228. |
[90] | Wang J, Yan C, Li Y, Li C, Zhao X, Yuan C, Sun Q, Shan S. GWAS discovery of candidate genes for yield-related traits in peanut and support from earlier QTL mapping studies. Genes (Basel), 2019,10:803. |
[91] | Zhang X, Zhu S, Zhang K, Wan Y, Liu F, Sun Q, Li Y. Establishment and evaluation of a peanut association panel and analysis of key nutritional traits. J Integr Plant Biol, 2018,60:195-215. |
[92] | Yu J, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008,178:539-551. |
[93] | Cavanagh C, Morell M, Mackay I, Powell W. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol, 2008,11:215-221. |
[94] | Holbrook C C, Isleib T G, Ozias-Akins P, Chu Y, Knapp S J, Tillman B, Guo B, Gill R, Burow M D. Development and phenotyping of recombinant inbred line (RIL) populations for peanut (Arachis hypogaea). Peanut Sci, 2013,40:89-94. |
[95] | Chu Y, Holbrook C C, Isleib T G, Burow M, Culbreath A K, Tillman V, Chen J, Clevenger J, Ozias-Akins P. Phenotyping and genotyping parents of sixteen recombinant inbred peanut populations. Peanut Sci, 2018,45:1-11. |
[96] | Zhao J, Huang L, Ren X, Pandey M K, Wu B, Chen Y, Zhou X, Chen W, Xia Y, Li Z, Luo H, Lei Y, Varshney R K, Liao B, Jiang H. Genetic variation and association mapping of seed- related traits in cultivated peanut (Arachis hypogaea L.) using single-locus simple sequence repeat markers. Front Plant Sci, 2017,8:02105. |
[97] | Pandey M K, Wang H, Khera P, Vishwakarma M K, Kale S M, Culbreath A K, Holbrook C C, Wang X, Varshney R K, Guo B. Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front Plant Sci, 2017,8:25. |
[98] | Kumar R, Janila P, Vishwakarma M K, Khan A W, Manohar S S, Gangurde S S, Variath M T, Shasidhar Y, Pandey M K, Varshney R K. Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. Plant Biotechnol J, 2020,18:992-1003. |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[4] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[5] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[6] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[7] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[8] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[9] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[10] | 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150. |
[11] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[12] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[13] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[14] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[15] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
|