欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 292-303.doi: 10.3724/SP.J.1006.2022.12013

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析

杨谨1,2(), 白爱宁3, 白雪3, 陈娟3, 郭林1, 刘春明1,3,*()   

  1. 1中国农业科学院作物科学研究所, 北京100081
    2中国农业科学院研究生院, 北京 100081
    3中国科学院植物研究所, 北京 100093
  • 收稿日期:2021-02-18 接受日期:2021-04-26 出版日期:2022-02-12 网络出版日期:2021-05-17
  • 通讯作者: 刘春明
  • 作者简介:E-mail: jinyang201587@163.com
  • 基金资助:
    本研究由北京市科技计划项目(Z181100002418010);中国科学院国际合作局国际伙伴计划(151111KYSB20180049);国家转基因生物新品种培育重大专项资助(2019ZX08010-001)

Phenotypic and genetic analyses of a rice mutant eed1 with defected embryo and endosperm development

YANG Jin1,2(), BAI Ai-Ning3, BAI Xue3, CHEN Juan3, GUO Lin1, LIU Chun-Ming1,3,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
  • Received:2021-02-18 Accepted:2021-04-26 Published:2022-02-12 Published online:2021-05-17
  • Contact: LIU Chun-Ming
  • Supported by:
    This study was supported by the Beijing Scientific and Technological Research Program(Z181100002418010);the CAS-Commonwealth Scientific and Industrial Research Organization Bilateral Collaboration Project(151111KYSB20180049);the National Major Project for Developing New GM Crops(2019ZX08010-001)

摘要:

从由化学诱变剂甲基磺酸乙酯(ethylmethane sulfonate, EMS)处理的粳稻品种中花11突变体库中, 筛选到一个可稳定遗传的胚胎和胚乳发育缺陷的突变体, 命名为embryo and endosperm defective 1 (eed1)。eed1籽粒千粒重、颖果的粒长、粒宽、粒厚、萌发率、总淀粉、直链淀粉和贮藏蛋白系列指标较野生型均显著降低。eed1颖果严重皱缩, 且胚乳呈粉质。利用扫描电镜观察发现, 与中花11相比, eed1胚乳中淀粉粒排列疏松, 多以单一、分散的淀粉粒存在, 且呈近似球形。eed1胚胎结构异常, 部分颖果未见有胚胎分化的痕迹。qRT-PCR发现, eed1胚乳中参与淀粉和贮藏蛋白合成的大部分基因表达下调。利用eed1与籼稻南京6号杂交得到的F2分离群体进行基因定位分析, 将EED1定位于9号染色体长臂672 kb的范围内, 包含114个开放读码框。本研究为进一步解析EED1基因调控水稻胚胎和胚乳发育的机制奠定了基础。

关键词: 水稻, 胚胎和胚乳发育, 籽粒灌浆

Abstract:

A stably inherited embryo and endosperm defective mutant, named embryo and endosperm defective 1 (eed1), was obtained from the mutant population of rice Zhonghua 11, generated by ethylmethane sulfonate (EMS). The 1000-grain weight, grain length, grain width, grain thickness, germination rate, total starch, amylose, and storage protein contents in eed1 mature caryopses were significantly decreased compared with wild type. In eed1, the caryopses were shrunken and the endosperm was opaque. Scanning electron microscopy observation revealed that starch granules in eed1 endosperm cells were loosely packed, in single, disperse and spherical forms. The embryo of eed1 was abnormal, and some caryopses showed no sign of embryonic differentiation. Most genes involved in biosynthesis of starch and storage protein were down-regulated in eed1 endosperm by qRT-PCR. EED1 was mapped in an interval of 672 kb on chromosome 9 using a F2 population derived from a cross between eed1 and Nanjing 6. The region contained 114 open reading frames. This study lays a foundation for further studying EED1 gene in regulating development of rice embryo and endosperm.

Key words: rice, embryo and endosperm development, grain filling

表1

实时荧光定量PCR分析所用的引物"

基因名
Genes ID
正向引物序列
Forward sequences (5'-3')
反向引物序列
Reverse sequences (5'-3')
Ubiquitin CTGTCAACTGCCGCAAGAAG GGCGAGTGACGCTCTAGTTC
OsAGPL1 GGAAGACGGATGATCGAGAAAG CACATGAGATGCACCAACGA
OsAGPL2 AGTTCGATTCAAGACGGATAGC CGACTTCCACAGGCAGCTTATT
OsAGPL3 AAGCCAGCCATGACCATTTG CACACGGTAGATTCACGAGACAA
OsAGPS1 GTGCCACTTAAAGGCACCATT CCCACATTTCAGACACGGTTT
OsAGPS2a ACTCCAAGAGCTCGCAGACC GCCTGTAGTTGGCACCCAGA
OsAGPS2b AACAATCGAAGCGCGAGAAA GCCTGTAGTTGGCACCCAGA
OsSS I GGGCCTTCATGGATCAACC CCGCTTCAAGCATCCTCATC
OsS IIa GCTTCCGGTTTGTGTGTTCA CTTAATACTCCCTCAACTCCACCAT
OsSS IIc GACCGAAATGCCTTTTTCTCG GGGCTTGGAGCCTCTCCTTA
OsSS IIIa GCCTGCCCTGGACTACATTG GCAAACATATGTACACGGTTCTGG
OsSS IIIb ATTCCGCTCGCAAGAACTGA CAACCGCAGGATAACGGAAA
OsSS IVa GGGAGCGGCTCAAACATAAA CCGTGCACTGACTGCAAAAT
OsSS IVb ATGCAGGAAGCCGAGATGTT ACGACAATGGGTGCCAAGAT
OsGBSS I
OsGBSS II
AACGTGGCTGCTCCTTGAA
AGGCATCGAGGGTGAGGAG
TTGGCAATAAGCCACACACA
CCATCTGGCCCACATCTCTA
OsBE I
OsBE IIa
TGGCCATGGAAGAGTTGGC
GCCAATGCCAGGAAGATGA
CAGAAGCAACTGCTCCACC
GCGCAACATAGGATGGGTTT
OsBE IIb ATGCTAGAGTTTGACCGC AGTGTGATGGATCCTGCC
OsISA1 TGCTCAGCTACTCCTCCATCATC AGGACCGCACAACTTCAACATA
OsISA2 TAGAGGTCCTCTTGGAGG AATCAGCTTCTGAGTCACCG
OsISA3 ACAGCTTGAGACACTGGGTTGAG GCATCAAGAGGACAACCATCTG
OsPUL ACCTTTCTTCCATGCTGG CAAAGGTCTGAAAGATGGG
OsDPE2 CAAGTACACCACAAGACCAGCAA CGTCCAACAGCGAATCCAAT
OsPHOL TTGGCAGGAAGGTTTCGCT CGAAGCCTGAAGTGAACTTGCT
OsPHOH CACCAAGACGAAGCTCATCAAG TTCACTCGTTGCTGGGTTCTC
GluA1 CATTTGAGCCAATTCGGAGT GGCCTGATTGTTGGAACTGT
GluA2 GCAAGAGCAGGAACAAGGAC CCTCATGGTGCAAAAGGTCT
GluA3 TGAAAACCAACCCTGACTCC ACTCATCTCCCCTGTTGTGC
GluB1 GCCAAAGTCAGAGCCAAAAG GAACCAATGTGCAACACCAG
GluB4 GCGACCAGAAGGCTACAAAG TTGCTTGTTGATCGTTGCTC
Glutelinλ TGGCGACCATAGCTTTCTCT GGGTTGTGCCATGGATTTAC
Globulin1 ATCGAGAACGGCGAGAAGT GGACGGAGATGGTATGGAGA
Globulin2 CGACGAGGTGTTCTACGTCA GTGTTGGCGGAGTAGACGAT
11S-Globulin CACCAAACCCGATCTTCAGT CGGAACAGCTTCTCCATCTC
19kD-Globulin GCCAGTAATTGCAGGGGATA AGGTCACCACCAACGTAAGC
Prolamin TCTCCAACCAACAATAGCAATG TGCGTAGCTATCTGTGCCCGTC
10kD-Prolamin TGCAGTATTTCCCACCAACA ACATGAACATGGCTGTGGAG
13kD-Prolamin CACAGCGCAGTTTGATGTTT GCTTGCCGCAATGCTATACT
17kD-Prolamin TTTGATGCTTGCACCTATGG GCAGCTGCTCAGTTTTAGCC
RA16 AGGTAGTGATCTCGGCGTTG CCGATTCCTGGCTGACATAG
RA17 TTCTCGGTATTGCTCCTCGT CTTATTCCTGGCCGACATTG

表2

EED1基因定位所用分子标记"

引物名
Primers ID
正向引物序列
Forward sequences (5'-3')
反向引物序列
Reverse sequences (5'-3')
OS907 CTTCTAACTTTTCCATCACATCG CCTCCAACTACCAGCCATAA
InDel950
InDel976
ACTTTCTAACTTCCTAATAAG
GTTAAATCTTCTCTCAATCT
GTTCTGGAATGAAATATTAGA
TCTCTCCGGTCTCTCCCTGC
RM107 AGATCGAAGCATCGCGCCCGAG ACTGCGTCCTCTGGGTTCCCGG
RM201 GTACTCTCGCCGTTCACAACTCC TTAGTGACCGGGATGACACAGC
RM245 ATGCCGCCAGTGAATAGC CTGAGAATCCAATTATCTGGGG
InDel908 TGGGAGAACTAAGGAGCAA CTGTTATCTGGCAATCTG

图1

ZH11与eed1成熟颖果表型分析 A: ZH11与eed1整粒成熟颖果外观比较, 标尺为1 mm; B: ZH11与eed1成熟颖果横切面比较, 标尺为1 mm; C: ZH11与eed1的成熟颖果大小比较, n = 20; D: ZH11与eed1的成熟烘干籽粒千粒重比较, n = 3。数值为平均值±标准差; 采用Student’s t测验, **表示P < 0.01; E~F: ZH11 (E)与eed1 (F)成熟颖果扫描电镜观察, 标尺为5 μm。"

"

图3

ZH11与eed1再生植株颖果表型分析 A~B: eed1愈伤组织在RE2培养基上分化产生不定芽和不定根(A), 最终长成小苗(B), 标尺为2 cm; C~D: ZH11与eed1不同发育时期颖果的鲜重(C)和干重(D)变化; E: ZH11与eed1受粉后0~30 d新鲜颖果的表型, 标尺为1 mm; F: ZH11与eed1受粉后24、27、30 d颖果烘干之后的表型, 标尺为1 mm; DAP为受粉后天数; 数值为平均值±标准差; 采用Student’s t测验, *表示P < 0.05, **表示P < 0.01。"

图4

eedl颖果中淀粉含量和贮藏蛋白累积分析 A~B: ZH11、WT和eed1成熟颖果的总淀粉(A)和直链淀粉(B)含量的测定, n = 3。数值为平均值±标准差; 采用Student’s t测验, **表示P < 0.01; C: ZH11、WT和eed1成熟颖果总蛋白SDS-PAGE电泳图谱; αGT: 谷蛋白酸性亚基, αGlb: 球蛋白; βGT: 谷蛋白碱性亚基; Pro or Alb: 醇溶蛋白或清蛋白。"

图5

eed1胚乳中淀粉和贮藏蛋白合成基因的表达水平分析 A: 参与淀粉生物合成的基因在ZH11与eed1胚乳中的相对表达水平; B: 参与贮藏蛋白生物合成的基因在ZH11与eed1胚乳中的相对表达水平。"

表3

EED1/eed1所产生籽粒的遗传分析"

表型
Phenotype
杂合植株-1
Heterozygous plant-1
杂合植株-2
Heterozygous plant-2
杂合植株-3
Heterozygous plant-3
正常籽粒 Normal grains 157 152 133
胚胎且胚乳缺陷籽粒 eed1 grains 47 50 45
χ2(3:1) 0.418 < 3.84 (P > 0.05) 0.006 < 3.84 (P > 0.05) 0.007 < 3.84 (P > 0.05)

图6

EED1基因的遗传定位 A: EED1基因与9号染色体长臂上的分子标记OS907和InDel908连锁; B: 利用61个分离单株将EED1定位到672 kb的区间内, 该区间内有114个ORFs。"

[1] Nallamilli B R R, Zhang J, Mujahid H, Malone B M, Bridges S M, Peng Z H. Polycomb group gene OsFIE2 regulates rice(Oryza sativa) seed development and grain filling via a mechanism distinct from Arabidopsis. PLoS Genet, 2013,9:e1003322.
[2] Wu X B, Liu J X, Li D Q, Liu C M. Rice caryopsis development: I. Dynamic changes in different cell layers. J Integr Plant Biol, 2016,58:772-785.
[3] Itoh J I, Nonomura K I, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plant development: from zygote to spikelet. Plant Cell Physiol, 2005,46:23-47.
[4] Mizutani M, Naganuma T, Tsutsumi K I, Saitoh Y. The syncytium-specific expression of the Orysa; KRP3 CDK inhibitor: implication of its involvement in the cell cycle control in the rice (Oryza sativa L.) syncytial endosperm. J Exp Bot, 2010,61:791-798.
[5] 刘春明, 程佑发, 刘永秀, 孙蒙祥, 薛红卫. 植物种子发育的分子机理. 中国基础科学, 2016,18:1-13.
Liu C M, Cheng Y F, Liu Y X, Sun M X, Xue H W. Molecular mechanisms of seed development in plants. China Basic Sci, 2016,18:1-13 (in Chinese).
[6] 黄小荣. OsGCD1在雄配子体形成, 胚胎模式建成与胚乳发育中的功能研究. 武汉大学博士学位论文, 湖北武汉, 2017.
Huang X R. Functional Analysis of OsGCD1 in Male Gametophyte Formation, Embryo Pattern Formation and Endosperm Development of Rice (Oryza sativa). PhD Dissertation of Wuhan University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[7] Noriko K, Asuka N, Naoki S, Eriko T, Yasuo N, Hidemi K, Makoto M. Rice globular embryo 4 (gle4) mutant is defective in radial pattern formation during embryogenesis. Plant Cell Physiol, 2003,44:875-883.
[8] Itoh J I, Sato Y, Sato Y, Hibara K I, Shimizu-Sato S, Kobayashi H, Takehisa H, Sanguinet K A, Namiki N, Nagamura Y. Genome-wide analysis of spatiotemporal gene expression patterns during early embryogenesis in rice. Development, 2016,143:1217-1227.
[9] Huang X R, Peng X B, Sun M X. OsGCD1 is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development. New Phytol, 2017,215:1039-1058.
[10] Lopes M A, Larkins B A. Endosperm origin, development, and function. Plant Cell, 1993,5:1383-1399.
[11] Liu J X, Wu X B, Yao X F, Yu R, Larkin P J, Liu C M. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proc Natl Acad Sci USA, 2018,115:11327-11332.
[12] Wu X B, Liu J X, Li D Q, Liu C M. Rice caryopsis development: II. Dynamic changes in the endosperm. J Integr Plant Biol, 2016,58:786-798.
[13] Hara T, Katoh H, Ogawa D, Kagaya Y, Sato Y, Kitano H, Nagato Y, Ishikawa R, Ono A, Kinoshita T, Takeda S, Hattori T. Rice SNF2 family helicase ENL1 is essential for syncytial endosperm development. Plant J, 2015,81:1-12.
[14] 韩小花. 水稻籽粒中控制淀粉合成关键基因OsPDIL1-1的图位克隆及功能分析. 南京农业大学博士学位论文, 江苏南京, 2011.
Han X H. Map-based Cloning and Functional Analysis of a Key Gene OsPDIL1-1 Involved in the Starch Biosynthesis in Rice. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 (in Chinese with English abstract).
[15] Wei X J, Jiao G A, Lin H Y, Sheng Z H, Shao G N, Xie L H, Tang S Q, Xu Q G, Hu P S. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development. J Integr Plant Biol, 2017,59:134-153.
[16] Ryoo N, Yu C, Park C S, Baik M Y, Park I M, Cho M H, Bhoo S H, An G, Hahn T R, Jeon J S. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice( Oryza sativa L.). Plant Cell Rep, 2007,26:1083-1095.
[17] Wang W, Wei X, Jiao G, Chen W, Wu Y, Sheng Z, Hu S, Xie L, Wang J, Tang S, Hu P. GBSS-BINDING PROTEIN, encoding a CBM48 domain containing protein, affects rice quality and yield. J Integr Plant Biol, 2019,62:948-966.
[18] Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot, 2013,64:3453-3466.
[19] 刘巧泉, 周丽慧, 王红梅, 顾铭洪. 水稻种子贮藏蛋白合成的分子生物学研究进展. 分子植物育种, 2008,6:1-15.
Liu Q Q, Zhou L H, Wang H M, Gu M H. Advances on biosynthesis of rice seed storage proteins in molecular biology. Mol Plant Breed, 2008,6:1-15 (in Chinese with English abstract).
[20] Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice. Plant J, 2009,59:908-920.
[21] She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K I, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURY ENDOSPERM 2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010,22:3280-3294.
[22] Xing Y Z, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442.
[23] An L, Tao Y, Chen H, He M J, Xiao F, Li G H, Ding Y F, Liu Z H. Embryo-endosperm interaction and its agronomic relevance to rice quality. Front Plant Sci, 2020,11:587641.
[24] Lafon-Placette C, Köhler C. Embryo and endosperm, partners in seed development. Curr Opin Plant Biol, 2014,17:64-69.
[25] Hehenberger E, Kradolfer D, Köhler C. Endosperm cellularization defines an important developmental transition for embryo development. Development, 2012,139:2031-2039.
[26] Pignocchi C, Minns G E, Nesi N, Koumproglou R, Kitsios G, Benning C, Lloyd C W, Doonan J H, Hills M J. ENDOSPERM DEFECTIVE 1 is a novel microtubule-associated protein essential for seed development in Arabidopsis. Plant Cell, 2009,21:90-105.
[27] Nagasawa N, Hibara K I, Heppard E P, Vander Velden K A, Luck S, Beatty M, Nagato Y, Sakai H. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant J, 2013,75:592-605.
[28] Yang W B, Gao M J, Yin X, Liu J Y, Xu Y H, Zeng L J, Li Q, Zhang S B, Wang J M, Zhang X M, He Z H. Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome P450. Mol Plant, 2013,6:1945-1960.
[29] Xiong H X, Wang W, Sun M X. Endosperm development is an autonomously programmed process independent of embryogenesis. Plant Cell, 2021, doi: https://doi.org/10.1093/plcell/koab007.
[30] Zhang L, Qi Y Z, Wu M M, Zhao L, Zhao Z C, Lei C L, Hao Y Y, Yu X W, Sun Y L, Zhang X, Guo X P, Ren Y L, Wan J M. Mitochondrion-targeted PENTATRICOPEPTIDE REPEAT 5 is required for cis-splicing of nad4 intron 3 and endosperm development in rice. Crop J, 2020,9:282-296.
[31] Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol, 1997,35:205-218.
[32] Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994,6:271-282.
[33] Ren Y L, Wang Y H, Pan T, Wang Y L, Wang Y F, Gan L, Wei Z Y, Wang F, Wu M M, Jing R N, Wang J C, Wan G X, Bao X H, Zhang B L, Zhang P C, Zhang Y, Ji Y, Lei C L, Zhang X, Cheng Z J, Lin Q B, Zhu S S, Zhao Z C, Wang J, Wu C Y, Qiu L J, Wang H Y, Wan J M. GPA5 encodes a Rab5a effector required for post-golgi trafficking of rice storage proteins. Plant Cell, 2020,32:758-777.
[34] Zhao J, Qin J J, Song Q, Sun C Q, Liu F X. Combining QTL mapping and expression profile analysis to identify candidate genes of cold tolerance from Dongxiang common wild rice (Oryza rufipogon Griff.). J Integr Agric, 2016,15:1933-1943.
[35] Ohdan T, Francisco P B J, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot, 2005,56:3229-3244.
[36] 梁子英, 刘芳. 实时荧光定量PCR技术及其应用研究进展. 现代农业科技, 2020, (6):1-3.
Lang Z Y, Liu F. Research progress on real-time quantitative PCR technology and its application. Mod Agric Sci Technol, 2020, (6):1-3 (in Chinese with English abstract).
[37] 李景芳, 田云录, 刘喜, 刘世家, 陈亮明, 江玲, 张文伟, 徐大勇, 王益华, 万建民. 鸟苷酸激酶OsGK1对水稻种子发育至关重要. 中国水稻科学, 2018,32:415-426.
Li J F, Tian Y L, Liu X, Liu S J, Chen M L, Jiang L, Zhang W W, Xu D Y, Wang Y H, Wan J M. The guanylate kinase OsGK1 is essential for seed development in rice. Chin J Rice Sci, 2018,32:415-426 (in Chinese with English abstract).
[38] 杜溢墨, 潘天, 田云录, 刘世家, 刘喜, 江玲, 张文伟, 王益华, 万建民. 水稻粉质皱缩胚乳突变体fse4的表型分析与基因克隆. 中国水稻科学, 2019,33:499-512.
Du Y M, Pan T, Tian Y L, Liu S J, Liu X, Jiang L, Zhang W W, Wang Y H, Wan J M. Phenotypic analysis and gene cloning of rice floury endosperm mutant fse4. Chin J Rice Sci, 2019,33:499-512 (in Chinese with English abstract).
[39] Hu T T, Tian Y L, Zhu J P, Wang Y L, Jing R N, Lei J, Sun Y L, Yu Y F, Li J F, Chen X L, Zhu X, Hao Y Y, Liu L L, Wang Y H, Wan J M. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. Plant Cell Rep, 2018,37:1667-1679.
[40] Wu M W, Zhao H, Zhang J D, Guo L, Liu C M. RADICLELESS 1 (RL1)-mediated nad4 intron 1 splicing is crucial for embryo and endosperm development in rice(Oryza sativa L.). Biochem Biophys Res Commun, 2020,523:220-225.
[41] 金田蕴, 李辉, 郭涛, 刘晓璐, 苏宁, 吴赴清, 万建民. 水稻稳定高垩白率突变体的获得与理化特性分析. 作物学报, 2010,36:121-132.
Jin T Y, Li H, Guo T, Liu X L, Su N, Wu F Q, Wan J M. Analysis of physiological and biochemical characteristics of six mutants with stable high percentage of chalkiness in rice grains. Acta Agron Sin, 2010,36:121-132 (in Chinese with English abstract).
[42] Teng X, Zhong M S, Zhu X P, Wang C M, Ren Y L, Wang Y L, Zhang H, Jiang L, Wang D, Hao Y Y, Wu M M, Zhu J P, Zhang X, Guo X P, Wang Y H, Wan J M. FLOURY ENDOSPERM 16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. Plant Biotechnol J, 2019,17:1914-1927.
[43] You X M, Zhang W W, Hu J L, Jing R N, Cai Y, Feng Z M, Kong F, Zhang J, Yan H G, Chen W W, Chen X G, Ma J, Tang X J, Wang P, Zhu S S, Liu L L, Jiang L, Wan J M. FLOURY ENDOSPERM 15 encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm. Plant Cell Rep, 2019,38:345-359.
[44] Zhong M S, Liu X, Liu F, Ren Y L, Wang Y L, Zhu J P, Teng X, Duan E, Wang F, Zhang H, Wu M M, Hao Y Y, Zhu X P, Jing R N, Guo X P, Jiang L, Wang Y H, Wan J M. FLOURY ENDOSPERM 12 encoding Alanine Aminotransferase 1 regulates carbon and nitrogen metabolism in rice. J Plant Biol, 2019,62:61-73.
[45] Wang H H, Huang Y C, Xiao Q, Huang X, Li C S, Gao X Y, Wang Q, Xiang X L, Zhu Y D, Wang J C, Wang W Q, Larkins B A, Wu Y R. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat Commun, 2020,11:5346.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!