欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 791-800.doi: 10.3724/SP.J.1006.2022.14062

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆突变体ygl2黄绿叶基因的精细定位

王好让1(), 张勇2, 于春淼2, 董全中, 李微微1,3, 胡凯凤, 张明明2, 薛红, 杨梦平2, 宋继玲, 王磊2, 杨兴勇, 邱丽娟2,*()   

  1. 1中国农业科学院作物科学研究所, 北京 100081
    2黑龙江省农业科学院克山分院, 黑龙江齐齐哈尔 161606
    3东北农业大学农学院, 黑龙江哈尔滨 150030
  • 收稿日期:2021-04-16 接受日期:2021-07-12 出版日期:2022-04-12 网络出版日期:2021-08-06
  • 通讯作者: 邱丽娟
  • 作者简介:王好让, E-mail: wanghaorang1018@163.com第一联系人:**同等贡献
  • 基金资助:
    国家自然科学基金项目(31630056);中央级公益性科研院所基本科研业务费专项资助(S2021ZD02)

Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.)

WANG Hao-Rang1(), ZHANG Yong2, YU Chun-Miao2, DONG Quan-Zhong, LI Wei-Wei1,3, HU Kai-Feng, ZHANG Ming-Ming2, XUE Hong, YANG Meng-Ping2, SONG Ji-Ling, WANG Lei2, YANG Xing-Yong, QIU Li-Juan2,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161606, Heilongjiang, China
    3College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2021-04-16 Accepted:2021-07-12 Published:2022-04-12 Published online:2021-08-06
  • Contact: QIU Li-Juan
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31630056);Central Public-intreest Scientific Institution Basal Research Fund(S2021ZD02)

摘要:

叶片是大豆进行光合碳同化的主要器官, 其颜色与光能的捕获力和转化效率有关, 也与大豆的产量密切相关。因此, 大豆叶色相关基因的挖掘对从光合碳同化途径解析大豆产量问题具有重要意义。黄绿叶是区别于大豆普通绿色叶片的突变类型, 是研究大豆叶色相关基因的重要遗传材料。本研究发现了一个黄绿叶突变体ygl2 (yellow-green leaf 2), 该突变体是由大豆品系GL11自然突变而来, 其黄绿叶表型可以稳定遗传。与绿叶野生型GL11相比较, 突变体ygl2叶片中叶绿素含量极显著降低, 株高、百粒重、蛋白含量均存在显著差异。利用GL11和ygl2构建分离群体, 遗传分析表明, ygl2的黄绿叶表型受1对隐性核基因控制, 利用分离群体将黄绿叶基因ygl2定位于2号染色体末端SSR标记02_104到02_107之间, 区间物理距离为56.1 kb, 包含9个基因。本研究结果为大豆黄绿叶基因图位克隆及分子标记辅助育种奠定了基础。

关键词: 大豆, 黄绿叶突变体, 遗传分析, 精细定位

Abstract:

Leaf is the main organ of photosynthetic carbon assimilation in soybean, and its color is not only related to the trapping power and conversion efficiency of light energy, but also closely related to the yield of soybean. Therefore, the mining of soybean leaf color-related genes is of great significance to analyze the yield of soybean from the pathway of photosynthetic carbon assimilation. Yellow-green leaf is a mutation type different from common green leaves of soybean, and it is an important genetic material to explore the genes related to leaf color of soybean. In this study, we found a yellow-green leaf mutant ygl2 (yellow-green leaf 2), which was naturally mutated from soybean strain GL11, and its yellow-green leaf phenotype could be stably inherited. Compared with the green leaf wild type GL11, the leaf chlorophyll content of mutant ygl2 decreased significantly, and there were significant differences in plant height, 100-grain weight, and protein content. The segregated population was constructed by GL11 and ygl2. Genetic analysis showed that the yellow-green leaf phenotype of ygl2 was controlled by a pair of recessive nuclear genes. The yellow-green leaf gene ygl2 was located between SSR markers 02_104 and 02_107 at the end of chromosome 2 using the isolated population, with an interval physical distance of 56.1 kb, and contained nine genes. These results laid a solid foundation for map-based cloning and molecular marker-assisted breeding of yellow and green leaf genes in soybean.

Key words: soybean, yellow-green leaf mutant, genetic analysis, fine mapping

图1

突变体ygl2与野生型GL11表型 A: 突变体ygl2和野生型GL11苗期植株表型; B: 突变体ygl2和野生型GL11鼓粒期叶片表型。标尺为4 cm。"

图2

突变体ygl2与野生型GL11的主要农艺性状 误差线表示标准差; *和**分别表示在0.05、0.01水平显著差异。"

图3

苗期突变体ygl2与野生型GL11叶片中光合色素含量 野生型GL11和突变体ygl2在第4个三小叶展开时(V4期)叶片中光合色素含量及比值。误差线表示标准差; *和**分别表示在0.05、0.01水平显著差异。"

表1

突变体ygl2与正常绿色品种杂交F2的叶色分离"

组合名称
Combination
总株数
Total number of plants
绿叶植株数
No. of green leaf plants
黄绿叶植株数
No. of yellow-green leaf plants
期望比
Expected ratio
卡方值
χ2 3:1
P
ygl2×GL11 567 412 155 3:1 1.529 0.199

图4

利用ED关联方法鉴定黄绿叶基因候选区间 横坐标为染色体名称, 彩色的点代表每个SNP位点的ED值, 黑色的线为拟合后的ED值, 红色的虚线代表显著性关联阈值。"

表2

精细定位所用分子标记"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
02_55 GTGTTCCACTCCACGTTTCC CATTTCCCCTTTCACAATCG
02_81 AACCGAGTTTGGTTCGATTC TGCTGCTTGATGATGAGGAC
02_90 CCATCTTATGGACTTGTTTGGA GCCAAGAATGACCATTATGC
02_101 TCACTAATCACAACAACCCAAA CGACCGGTGTGTTTAAGGTC
02_103 TCAGTCGCAGATTGATCAGG CCCAATTGTATCCATCAACG
02_104 AACCTAGCATTGCAACCTGC TCATCACCCCTTATCCGTTC
02_107 AAAACGAGGCCTTAATCGAAA AAACCAAAGAATACCGTGAAAAA
02_110 CGAAATGCCACCTTTTCAAT AGCAAACTAAGGTCGTTTTCG
02_117 GCAGTTGTGCGTGGGAGAGAG GCGACATAGCTAATTAAGTAAGTT
02_122 GCGTGGTGCACGATCATATAGA GCGTCTCCTTCGCTATCTCAAAC
02_125 CCAGGAATGCAGGTTTCTCT CGTGACTCTTCTTCCTTTCCA
02_130 AATGGAGAGGGGAACACAACT CCTAACGCACGAAATTTTCTC
ID2192 GCCTAATTTTGGCACCTTCA CACTCCTCTGCTTTGTTTGCT

图5

ygl2基因在2号染色体上的精细定位 A: ygl2所在区域的6个交换单株(2001、2006、2027、2144、CJ50和1054)的基因型, 根据其后代的表型确认了这些交换单株基因型; B: ygl2定位区间内共9个基因。"

表3

定位区间内的编码基因及其推测功能"

基因名称
Gene name
推测功能
Putative function
Glyma.02G304600 未知 Unknown
Glyma.02G304700 铁氧还蛋白氧化还原酶 Ferredoxin oxidoreductas
Glyma.02G304800 未知 Unknown
Glyma.02G304900 F-box相关 F-box-like
Glyma.02G305000 DNAj同源亚家族c成员 DNAj homolog subfamily c member
Glyma.02G305100 非特异性蛋白酪氨酸激酶/胞浆蛋白酪氨酸激酶/双特异性激酶
Non-specific protein-tyrosine kinase/cytoplasmic protein tyrosine kinase/dual-specificity kinase
Glyma.02G305200 核孔复合体蛋白Nup133 (NUP133) Nuclear pore complex protein Nup133 (NUP133)
Glyma.02G305300 钙转运ATP酶/钙转运p型 Calcium-transporting ATPase/calcium-translocating p-type
Glyma.02G305400 叶绿素a/b结合蛋白 Chlorophyll a/b binding protein

图6

2个候选基因表达分析 SAM: 茎顶端分生组织。误差线表示标准差; *和**分别表示在0.05、0.01水平显著差异。"

图7

9个候选基因的表达谱 数据来自Phytozome v12.1。"

[1] Chen Z C, Wang L, Dai Y X, Wan X C, Liu S R. Phenology-dependent variation in the non-structural carbohydrates of broadleaf evergreen species plays an important role in determining tolerance to defoliation (or herbivory). Sci Rep, 2017, 7:10125-10135.
doi: 10.1038/s41598-017-00109-8
[2] Xiong L R, Du H, Zhang K Y, Lyu D, He H L, Pan J, Cai R, Wang G. A mutation in CsYL2.1 encoding a plastid isoform of triose phosphate isomerase leads to yellow leaf 2.1 (yl2.1) in cucumber (Cucumis sativus L.). Int J Mol Sci, 2020, 22:322-335.
doi: 10.3390/ijms22010322
[3] Wilson-Sanchez D, Rubio-Diaz S, Munoz-Viana R, Manuel Perez-Perez J, Jover-Gil S, Ponce M R, Micol J L. Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. Plant J, 2014, 79:878-891.
doi: 10.1111/tpj.2014.79.issue-5
[4] Matsuda O, Tanaka A, Fujita T, Iba K. Hyperspectral imaging techniques for rapid identification of Arabidopsis mutants with altered leaf pigment status. Plant Cell Physiol, 2012, 53:1154-1170.
doi: 10.1093/pcp/pcs043 pmid: 22470059
[5] Fromme P, Melkozernov A, Jordan P, Krauss N. Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett, 2003, 555:40-44.
pmid: 14630316
[6] Johnson M P. Correction: photosynthesis. Essays Biochem, 2016, 60:255-273.
doi: 10.1042/EBC20160016
[7] Sandhu D, Atkinson T, Noll A, Johnson C, Espinosa K, Boelter J, Abel S, Dhatt B K, Barta T, Singsaas E, Sepsenwol S, Goggi A S, Palmer R G. Soybean proteins GmTic110 and GmPsbP are crucial for chloroplast development and function. Plant Sci, 2016, 252:76-87.
doi: 10.1016/j.plantsci.2016.07.006
[8] Xia Y, Li Z, Wang J W, Li Y H, Ren Y, Du J J, Song Q L, Ma S C, Song Y L, Zhao H Y, Yang Z Q, Zhang G S, Niu N. Isolation and identification of a TaTDR-like wheat gene encoding a bHLH domain protein, which negatively regulates chlorophyll biosynthesis in Arabidopsis. Int J Mol Sci, 2020, 21:629-642.
doi: 10.3390/ijms21020629
[9] South P F, Cavanagh A P, Liu H W, Ort D R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019, 363:45.
doi: 10.1126/science.aat9077
[10] Killough D T, Horlacher W R. The inheritance of virescent yellow and red plant colors in cotton. Genetics, 1933, 18:329-334.
doi: 10.1093/genetics/18.4.329 pmid: 17246695
[11] Granick S. Magnesium protoporphyrin as a precursor of chlorophyll in Chlorella. J Biol Chem, 1948, 175:333-342.
doi: 10.1016/S0021-9258(18)57262-8
[12] Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev S I. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynt Res, 2016, 130:251-266.
doi: 10.1007/s11120-016-0249-7
[13] Wu Z M, Zhang X, Wang J L, Wan J M. Leaf chloroplast ultrastructure and photosynthetic properties of a chlorophyll-deficient mutant of rice. Photosynthetica, 2014, 52:217-222.
doi: 10.1007/s11099-014-0025-x
[14] Oh S A, Park J H, Lee G I, Paek K H, Park S K, Nam H G. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J, 1997, 12:527-535.
pmid: 9351240
[15] Zhang J Y, Sui C H, Liu H M, Chen J J, Han Z L, Yan Q, Liu S Y, Liu H Z. Effect of chlorophyll biosynthesis-related genes on the leaf color in Hosta (Hosta plantaginea Aschers) and tobacco(Nicotiana tabacum L.). BMC Plant Biol, 2021, 21:45.
doi: 10.1186/s12870-020-02805-6
[16] Robert A S, Brian M P, Maarten K, Peter H Q. Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato. Mol Gene Genet Mgg, 1988, 213:9-14.
[17] Zhu Y, Yan P W, Dong S Q, Hu Z J, Wang Y, Yang J S, Xin X Y, Luo X J. Map-based cloning and characterization of YGL22, a new yellow-green leaf gene in rice (Oryza sativa). Crop Sci, 2021, 61:529-538.
doi: 10.1002/csc2.v61.1
[18] Zhang K J, Li Y, Zhu W W, Wei Y F, Njogu M, Lou Q F, Li J, Chen J F. Fine mapping and transcriptome analysis of virescent leaf gene v-2 in cucumber (Cucumis sativus L.). Front Plant Sci, 2020, 11:1458-1470.
[19] Qin D D, Dong J, Xu F C, Guo G G, Ge S T, Xu Q, Xu Y X, Li M F. Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing. BMC Genomics, 2015, 16:838.
doi: 10.1186/s12864-015-2015-1
[20] Li T C, Yang H Y, Lu Y, Dong Q, Liu G H, Chen F, Zhou Y B. Comparative transcriptome analysis of differentially expressed genes related to the physiological changes of yellow-green leaf mutant of maize. PeerJ, 2021, 9:e10567.
[21] Liu M F, Wang Y Q, Nie Z X, Gai J Y, Bhat J A, Kong J J, Zhao T J. Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr.]. Plant Mol Biol, 2020, 103:527-543.
doi: 10.1007/s11103-020-01008-9
[22] Sam R, Taylor A, Carly G, Katherine E, Sarah P, Alcira G, Reid P, Devinder S. Candidate gene identification for a lethal chlorophyll-deficient mutant in soybean. Agronomy, 2014, 4:462-469.
doi: 10.3390/agronomy4040462
[23] Campbell B W, Mani D, Curtin S J, Slattery R A, Michno J, Ort D R, Schaus P J, Palmer R G, Orf J H, Stupar R M. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3: Gen Genom Genet (Bethesda), 2014, 5:123-131.
[24] Kato K K, Palmer R G. Duplicate chlorophyll-deficient loci in soybean. Genome, 2004, 47:190-198.
pmid: 15060615
[25] Cai Z J, Steven R R, Richard M S. Regulation of photosynthesis in developing leaves of soybean chlorophyll-deficient mutants. Photosynth Res, 1997, 51:185-192.
doi: 10.1023/A:1005824706653
[26] Palmer R G, Nelson R L, Bernard R L, Stelly D M. Genetics and linkage of three chlorophyll-deficient mutants in soybean: y19, y22, and y23. J Hered, 1990, 81:404-406.
[27] Yu J S. Genetic studies with Shennong 2015, a lethal yellow mutant (y21) in soybean. Hereditas, 1986, 8:13-15.
[28] Wilcox J R, Probst A H. Inheritance of a chlorophyll-deficient character in soybeans. J Hered, 1969, 60:115-116.
doi: 10.1093/oxfordjournals.jhered.a107950
[29] Woodworth C M, Williams L F. Recent studies on the genetics of the soybeanl. Agron J, 1938, 30:125-129.
doi: 10.2134/agronj1938.00021962003000020006x
[30] Probst A H. The Inheritance of leaf abscission and other characters in soybeans1. Agron J, 1950, 42:35-45.
doi: 10.2134/agronj1950.00021962004200010007x
[31] Wang M, Li W Z, Fang C, Xu F, Liu Y C, Wang Z, Yang R, Zhang M, Liu S L, Lu S J, Lin T, Tang J Y, Wang Y Q, Wang H R, Lin H, Zhu B G, Chen M S, Kong F J, Liu B H, Zeng D L, Jackson S A, Chu C C, Tian Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 50:1435-1441.
[32] 邱丽娟. 大豆种质资源描述规范和数据标准. 北京. 中国农业出版社, 2006. p 22.
Qiu L J. Description and Data Standards for Soybean [Glycine max (L.) Merrill]. Beijing: China Agriculture Press, 2006. p22 (in Chinese).
[33] Song Q J, Jenkins J, Jia G F, Hyten D L, Pantalone V, Jackson S A, Schmutz J, Cregan P B. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016, 17:33.
doi: 10.1186/s12864-015-2344-0
[34] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23:687-697.
doi: 10.1101/gr.146936.112
[35] Song Q J, Jia G F, Zhu Y L, Grant D, Nelson R T, Hwang E Y, Cregan P B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci, 2010, 50:1950-1960.
doi: 10.2135/cropsci2009.10.0607
[36] Richter A S, Banse C, Grimm B. The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. eLife, 2019, 8:e46300.
[37] Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57:805-818.
doi: 10.1007/s11103-005-2066-9
[38] Zhang H Y, Zhang D, Han S, Zhang X, Yu D Y. Identification and gene mapping of a soybean chlorophyll efficient mutant. Plant Breed, 2011, 130:133-138.
doi: 10.1111/pbr.2011.130.issue-2
[39] Eskins K, Banks D J. The relationship of accessory pigments to chlorophyll a content in chlorophyll-deficient peanut and soybean varieties. Photochem Photobiol, 2010, 30:585-588.
doi: 10.1111/php.1979.30.issue-5
[40] Palmer R G, Xu M. Positioning 3 qualitative trait loci on soybean molecular linkage group E. J Hered, 2008, 99:674-678.
doi: 10.1093/jhered/esn070 pmid: 18779225
[41] Terry M J, Ryberg M, Raitt C E, Page A M. Altered etioplast development in phytochrome chromophore-deficient mutants. Planta, 2001, 214:314-325.
pmid: 11800397
[42] Millar A J, Kay S A. Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA, 1997, 93:15491-15496.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!