作物学报 ›› 2022, Vol. 48 ›› Issue (4): 791-800.doi: 10.3724/SP.J.1006.2022.14062
王好让1(), 张勇2, 于春淼2, 董全中, 李微微1,3, 胡凯凤, 张明明2, 薛红, 杨梦平2, 宋继玲, 王磊2, 杨兴勇, 邱丽娟2,*()
WANG Hao-Rang1(), ZHANG Yong2, YU Chun-Miao2, DONG Quan-Zhong, LI Wei-Wei1,3, HU Kai-Feng, ZHANG Ming-Ming2, XUE Hong, YANG Meng-Ping2, SONG Ji-Ling, WANG Lei2, YANG Xing-Yong, QIU Li-Juan2,*()
摘要:
叶片是大豆进行光合碳同化的主要器官, 其颜色与光能的捕获力和转化效率有关, 也与大豆的产量密切相关。因此, 大豆叶色相关基因的挖掘对从光合碳同化途径解析大豆产量问题具有重要意义。黄绿叶是区别于大豆普通绿色叶片的突变类型, 是研究大豆叶色相关基因的重要遗传材料。本研究发现了一个黄绿叶突变体ygl2 (yellow-green leaf 2), 该突变体是由大豆品系GL11自然突变而来, 其黄绿叶表型可以稳定遗传。与绿叶野生型GL11相比较, 突变体ygl2叶片中叶绿素含量极显著降低, 株高、百粒重、蛋白含量均存在显著差异。利用GL11和ygl2构建分离群体, 遗传分析表明, ygl2的黄绿叶表型受1对隐性核基因控制, 利用分离群体将黄绿叶基因ygl2定位于2号染色体末端SSR标记02_104到02_107之间, 区间物理距离为56.1 kb, 包含9个基因。本研究结果为大豆黄绿叶基因图位克隆及分子标记辅助育种奠定了基础。
[1] |
Chen Z C, Wang L, Dai Y X, Wan X C, Liu S R. Phenology-dependent variation in the non-structural carbohydrates of broadleaf evergreen species plays an important role in determining tolerance to defoliation (or herbivory). Sci Rep, 2017, 7:10125-10135.
doi: 10.1038/s41598-017-00109-8 |
[2] |
Xiong L R, Du H, Zhang K Y, Lyu D, He H L, Pan J, Cai R, Wang G. A mutation in CsYL2.1 encoding a plastid isoform of triose phosphate isomerase leads to yellow leaf 2.1 (yl2.1) in cucumber (Cucumis sativus L.). Int J Mol Sci, 2020, 22:322-335.
doi: 10.3390/ijms22010322 |
[3] |
Wilson-Sanchez D, Rubio-Diaz S, Munoz-Viana R, Manuel Perez-Perez J, Jover-Gil S, Ponce M R, Micol J L. Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. Plant J, 2014, 79:878-891.
doi: 10.1111/tpj.2014.79.issue-5 |
[4] |
Matsuda O, Tanaka A, Fujita T, Iba K. Hyperspectral imaging techniques for rapid identification of Arabidopsis mutants with altered leaf pigment status. Plant Cell Physiol, 2012, 53:1154-1170.
doi: 10.1093/pcp/pcs043 pmid: 22470059 |
[5] |
Fromme P, Melkozernov A, Jordan P, Krauss N. Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett, 2003, 555:40-44.
pmid: 14630316 |
[6] |
Johnson M P. Correction: photosynthesis. Essays Biochem, 2016, 60:255-273.
doi: 10.1042/EBC20160016 |
[7] |
Sandhu D, Atkinson T, Noll A, Johnson C, Espinosa K, Boelter J, Abel S, Dhatt B K, Barta T, Singsaas E, Sepsenwol S, Goggi A S, Palmer R G. Soybean proteins GmTic110 and GmPsbP are crucial for chloroplast development and function. Plant Sci, 2016, 252:76-87.
doi: 10.1016/j.plantsci.2016.07.006 |
[8] |
Xia Y, Li Z, Wang J W, Li Y H, Ren Y, Du J J, Song Q L, Ma S C, Song Y L, Zhao H Y, Yang Z Q, Zhang G S, Niu N. Isolation and identification of a TaTDR-like wheat gene encoding a bHLH domain protein, which negatively regulates chlorophyll biosynthesis in Arabidopsis. Int J Mol Sci, 2020, 21:629-642.
doi: 10.3390/ijms21020629 |
[9] |
South P F, Cavanagh A P, Liu H W, Ort D R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019, 363:45.
doi: 10.1126/science.aat9077 |
[10] |
Killough D T, Horlacher W R. The inheritance of virescent yellow and red plant colors in cotton. Genetics, 1933, 18:329-334.
doi: 10.1093/genetics/18.4.329 pmid: 17246695 |
[11] |
Granick S. Magnesium protoporphyrin as a precursor of chlorophyll in Chlorella. J Biol Chem, 1948, 175:333-342.
doi: 10.1016/S0021-9258(18)57262-8 |
[12] |
Brestic M, Zivcak M, Kunderlikova K, Allakhverdiev S I. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynt Res, 2016, 130:251-266.
doi: 10.1007/s11120-016-0249-7 |
[13] |
Wu Z M, Zhang X, Wang J L, Wan J M. Leaf chloroplast ultrastructure and photosynthetic properties of a chlorophyll-deficient mutant of rice. Photosynthetica, 2014, 52:217-222.
doi: 10.1007/s11099-014-0025-x |
[14] |
Oh S A, Park J H, Lee G I, Paek K H, Park S K, Nam H G. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J, 1997, 12:527-535.
pmid: 9351240 |
[15] |
Zhang J Y, Sui C H, Liu H M, Chen J J, Han Z L, Yan Q, Liu S Y, Liu H Z. Effect of chlorophyll biosynthesis-related genes on the leaf color in Hosta (Hosta plantaginea Aschers) and tobacco(Nicotiana tabacum L.). BMC Plant Biol, 2021, 21:45.
doi: 10.1186/s12870-020-02805-6 |
[16] | Robert A S, Brian M P, Maarten K, Peter H Q. Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato. Mol Gene Genet Mgg, 1988, 213:9-14. |
[17] |
Zhu Y, Yan P W, Dong S Q, Hu Z J, Wang Y, Yang J S, Xin X Y, Luo X J. Map-based cloning and characterization of YGL22, a new yellow-green leaf gene in rice (Oryza sativa). Crop Sci, 2021, 61:529-538.
doi: 10.1002/csc2.v61.1 |
[18] | Zhang K J, Li Y, Zhu W W, Wei Y F, Njogu M, Lou Q F, Li J, Chen J F. Fine mapping and transcriptome analysis of virescent leaf gene v-2 in cucumber (Cucumis sativus L.). Front Plant Sci, 2020, 11:1458-1470. |
[19] |
Qin D D, Dong J, Xu F C, Guo G G, Ge S T, Xu Q, Xu Y X, Li M F. Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing. BMC Genomics, 2015, 16:838.
doi: 10.1186/s12864-015-2015-1 |
[20] | Li T C, Yang H Y, Lu Y, Dong Q, Liu G H, Chen F, Zhou Y B. Comparative transcriptome analysis of differentially expressed genes related to the physiological changes of yellow-green leaf mutant of maize. PeerJ, 2021, 9:e10567. |
[21] |
Liu M F, Wang Y Q, Nie Z X, Gai J Y, Bhat J A, Kong J J, Zhao T J. Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr.]. Plant Mol Biol, 2020, 103:527-543.
doi: 10.1007/s11103-020-01008-9 |
[22] |
Sam R, Taylor A, Carly G, Katherine E, Sarah P, Alcira G, Reid P, Devinder S. Candidate gene identification for a lethal chlorophyll-deficient mutant in soybean. Agronomy, 2014, 4:462-469.
doi: 10.3390/agronomy4040462 |
[23] | Campbell B W, Mani D, Curtin S J, Slattery R A, Michno J, Ort D R, Schaus P J, Palmer R G, Orf J H, Stupar R M. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3: Gen Genom Genet (Bethesda), 2014, 5:123-131. |
[24] |
Kato K K, Palmer R G. Duplicate chlorophyll-deficient loci in soybean. Genome, 2004, 47:190-198.
pmid: 15060615 |
[25] |
Cai Z J, Steven R R, Richard M S. Regulation of photosynthesis in developing leaves of soybean chlorophyll-deficient mutants. Photosynth Res, 1997, 51:185-192.
doi: 10.1023/A:1005824706653 |
[26] | Palmer R G, Nelson R L, Bernard R L, Stelly D M. Genetics and linkage of three chlorophyll-deficient mutants in soybean: y19, y22, and y23. J Hered, 1990, 81:404-406. |
[27] | Yu J S. Genetic studies with Shennong 2015, a lethal yellow mutant (y21) in soybean. Hereditas, 1986, 8:13-15. |
[28] |
Wilcox J R, Probst A H. Inheritance of a chlorophyll-deficient character in soybeans. J Hered, 1969, 60:115-116.
doi: 10.1093/oxfordjournals.jhered.a107950 |
[29] |
Woodworth C M, Williams L F. Recent studies on the genetics of the soybeanl. Agron J, 1938, 30:125-129.
doi: 10.2134/agronj1938.00021962003000020006x |
[30] |
Probst A H. The Inheritance of leaf abscission and other characters in soybeans1. Agron J, 1950, 42:35-45.
doi: 10.2134/agronj1950.00021962004200010007x |
[31] | Wang M, Li W Z, Fang C, Xu F, Liu Y C, Wang Z, Yang R, Zhang M, Liu S L, Lu S J, Lin T, Tang J Y, Wang Y Q, Wang H R, Lin H, Zhu B G, Chen M S, Kong F J, Liu B H, Zeng D L, Jackson S A, Chu C C, Tian Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 50:1435-1441. |
[32] | 邱丽娟. 大豆种质资源描述规范和数据标准. 北京. 中国农业出版社, 2006. p 22. |
Qiu L J. Description and Data Standards for Soybean [Glycine max (L.) Merrill]. Beijing: China Agriculture Press, 2006. p22 (in Chinese). | |
[33] |
Song Q J, Jenkins J, Jia G F, Hyten D L, Pantalone V, Jackson S A, Schmutz J, Cregan P B. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016, 17:33.
doi: 10.1186/s12864-015-2344-0 |
[34] |
Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23:687-697.
doi: 10.1101/gr.146936.112 |
[35] |
Song Q J, Jia G F, Zhu Y L, Grant D, Nelson R T, Hwang E Y, Cregan P B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci, 2010, 50:1950-1960.
doi: 10.2135/cropsci2009.10.0607 |
[36] | Richter A S, Banse C, Grimm B. The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase. eLife, 2019, 8:e46300. |
[37] |
Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57:805-818.
doi: 10.1007/s11103-005-2066-9 |
[38] |
Zhang H Y, Zhang D, Han S, Zhang X, Yu D Y. Identification and gene mapping of a soybean chlorophyll efficient mutant. Plant Breed, 2011, 130:133-138.
doi: 10.1111/pbr.2011.130.issue-2 |
[39] |
Eskins K, Banks D J. The relationship of accessory pigments to chlorophyll a content in chlorophyll-deficient peanut and soybean varieties. Photochem Photobiol, 2010, 30:585-588.
doi: 10.1111/php.1979.30.issue-5 |
[40] |
Palmer R G, Xu M. Positioning 3 qualitative trait loci on soybean molecular linkage group E. J Hered, 2008, 99:674-678.
doi: 10.1093/jhered/esn070 pmid: 18779225 |
[41] |
Terry M J, Ryberg M, Raitt C E, Page A M. Altered etioplast development in phytochrome chromophore-deficient mutants. Planta, 2001, 214:314-325.
pmid: 11800397 |
[42] | Millar A J, Kay S A. Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA, 1997, 93:15491-15496. |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
[15] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
|