作物学报 ›› 2022, Vol. 48 ›› Issue (4): 801-811.doi: 10.3724/SP.J.1006.2022.14077
石育钦1,2(), 孙梦丹1, 陈帆1, 成洪涛1,2, 胡学志1, 付丽1, 胡琼1,2, 梅德圣1,2,*(), 李超1,*()
SHI Yu-Qin1,2(), SUN Meng-Dan1, CHEN Fan1, CHENG Hong-Tao1,2, HU Xue-Zhi1, FU Li1, HU Qiong1,2, MEI De-Sheng1,2,*(), LI Chao1,*()
摘要:
基因编辑技术可以实现对目标基因高效准确的修饰, 为植物遗传改良开辟了新途径。霉菌抗性位点(Mildew resistance locus O, MLO)基因是植物对白粉病菌防御的主效负向调节因子, 突变后能增强植物对白粉病的抗性, 但在油菜中是否具有同样的功能尚未见报道。为解析该基因在油菜抗病中的功能, 本研究通过分析油菜接种核盘菌后基因的表达情况发现, BnMLO6基因受核盘菌诱导表达; 利用CRISPR/Cas9基因编辑技术获得了一份BnMLO6基因6个同源拷贝同时突变的材料mlo6-212。遗传分析表明, CRISPR/Cas9引起的BnMLO6基因突变能够稳定遗传; mlo6-212突变体在田间和温室条件下都表现出明显的白粉病抗性; 在接种核盘菌24 h后, 病斑面积显著低于野生型, 减小19.5%; BnMLO6基因突变能激发叶片胼胝质的自发堆积, 增强接菌后乙烯和茉莉酸抗病信号。因此, BnMLO6基因可能参与了多条抗病信号路径, 负向调控油菜对白粉病和菌核病的抗性。研究结果不仅为BnMLO6基因协同调控油菜多种病原菌抗性的研究提供了参考, 也为油菜抗病性遗传改良提供了抗性资源和技术支撑。
[1] | 李利霞, 陈碧云, 闫贵欣, 高桂珍, 许鲲, 谢婷, 张付贵, 伍晓明. 中国油菜种质资源研究利用策略与进展. 植物遗传资源学报, 2020, 21:1-19. |
Li L X, Chen B Y, Yan G X, Gao G Z, Xu K, Xie T, Zhang F G, Wu X M. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China. J Plant Genet Resour, 2020, 21:1-19 (in Chinese with English abstract). | |
[2] | 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41:485-489. |
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41:485-489 (in Chinese with English abstract). | |
[3] | 孙祥良, 王华弟, 曹奎荣, 朱金良. 油菜菌核病对油菜千粒重及产量的影响. 浙江农业科学, 2014, 11:1732-1733. |
Sun X L, Wang H D, Cao K R, Zhu J L. Effects of Sclerotinia sclerotinia on 1000-grain weight and yield of rapeseed. J Zhe jiang Agric Sci, 2014, 11:1732-1733 (in Chinese with English abstract). | |
[4] | 吴健, 周永明, 王幼平. 油菜与核盘菌互作分子机理研究进展. 中国油料作物学报, 2018, 40:721-729. |
Wu J, Zhou Y M, Wang Y P. Research progress on molecular mechanisms of Brassica napus-Sclerotinia sclerotiorum interaction. Chin J Oil Crop Sci, 2018, 40:721-729 (in Chinese with English abstract). | |
[5] | 杨清坡, 刘万才, 黄冲. 近10年油菜主要病虫害发生危害情况的统计和分析. 植物保护, 2018, 44(3):24-30. |
Yang Q P, Liu W C, Huang C. Statistics and analysis of oilseed rape losses caused by main diseases and insect pests in recent 10 years. Plant Prot, 2018, 44(3):24-30 (in Chinese with English abstract). | |
[6] |
Gaetán S, Madia M. First report of canola powdery mildew caused by Erysiphe polygoni in Argentina. Plant Dis, 2004, 88:1163.
doi: 10.1094/PDIS.2004.88.10.1163C pmid: 30795271 |
[7] | 邵登魁. 油菜抗白粉病鉴定及相关的生理生化特性研究. 甘肃农业大学硕士学位论文,甘肃兰州, 2006. |
Shao D K. Identification of Resistance to Erysiphe cruciferarum Junell and Study on Enzymes Associated with PM in Brassica Rape. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu,China, 2006 (in Chinese with English abstract). | |
[8] | Tyagi S, Kumar R, Kumar V, Won S Y, Shukla P. Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crop Food, 2021, 12:125-144. |
[9] | 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37:953-973. |
Shan Q W, Gao C X. Research progress of genome editing and derivative technologies in plants. Hereditas, 2015, 37:953-973 (in Chinese with English abstract). | |
[10] | 刘耀光, 李构思, 张雅玲, 陈乐天. CRISPR/Cas植物基因组编辑技术研究进展. 华南农业大学学报, 2019, 40(5):38-49. |
Liu Y G, Li G S, Zhang Y L, Chen L T. Current advances on CRISPR/Cas genome editing technologies in plants. J South China Agric Univ, 2019, 40(5):38-49 (in Chinese with English abstract). | |
[11] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339:819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[12] |
Sorek R, Lawrence C M, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem, 2013, 82:237-266.
doi: 10.1146/biochem.2013.82.issue-1 |
[13] |
Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant, 2013, 6:2008-2011.
doi: 10.1093/mp/sst121 |
[14] |
Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant, 2013, 6:1975-1983.
doi: 10.1093/mp/sst119 |
[15] | Upadhyay S K, Kumar J, Alok A, Tuli R. RNA-guided genome editing for target gene mutations in wheat. G3: Gen Genom Genet, 2013, 3:2233-2238. |
[16] |
Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics, 2014, 41:63-68.
doi: 10.1016/j.jgg.2013.12.001 pmid: 24576457 |
[17] |
Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol, 2015, 87:99-110.
doi: 10.1007/s11103-014-0263-0 |
[18] |
Soyk S, Müller N A, Park S J, Schmalenbach I, Jiang K, Hayama R, Zhang L, Van Eck J, Jiménez-Gómez J M, Lippman Z B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet, 2017, 49:162-168.
doi: 10.1038/ng.3733 |
[19] |
Braatz J, Harloff H J, Mascher M, Stein N, Himmelbach A, Jung C. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol, 2017, 174:935-942.
doi: 10.1104/pp.17.00426 |
[20] |
Jørgensen I H. Discovery, characterization and exploitation of MLO powdery mildew resistance in barley. Euphytica, 1992, 63:141-152.
doi: 10.1007/BF00023919 |
[21] |
Devoto A, Hartmann H A, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh C S, Cohen F E, Emerson B C, Schulze-Lefert P, Panstruga R. Molecular phylogeny and evolution of the plant- specific seven-transmembrane MLO family. J Mol Evol, 2003, 56:77-88.
doi: 10.1007/s00239-002-2382-5 |
[22] |
Liu Q, Zhu H. Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene, 2008, 409:1-10.
doi: 10.1016/j.gene.2007.10.031 |
[23] |
Konishi S, Sasakuma T, Sasanuma T. Identification of novel MLO family members in wheat and their genetic characterization. Genes Genet Syst, 2010, 85:167-175.
pmid: 21041976 |
[24] |
Zhou S J, Jing Z, Shi J L. Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus. Genet Mol Res, 2013, 12:6565-6578.
doi: 10.4238/2013.December.11.8 pmid: 24391003 |
[25] |
Wolter M, Hollricher K, Salamini F, Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet, 1993, 239:122-128.
doi: 10.1007/BF00281610 |
[26] |
Ropenack E V, Parr A, Schulze-Lefert P. Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J Biol Chem, 1998, 273:9013-9022.
doi: 10.1074/jbc.273.15.9013 |
[27] |
Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins N C, Panstruga R, Schulze-Lefert P. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol, 2002, 129:1076-1085.
pmid: 12114562 |
[28] |
Kuhn H, Lorek J, Kwaaitaal M, Becker K, Micali C, Ver Loren van Themaat E, Bednarek P, Raaymakers T M, Appiano M, Bai Y, Meldau D, Baum S, Conrath U, Feussner I, Panstruga R. Key components of different plant defense pathways are dispensable for powdery mildew resistance of the Arabidopsis mlo2 mlo6 mlo12 triple mutant. Front Plant Sci, 2017, 8:1006.
doi: 10.3389/fpls.2017.01006 |
[29] | 贾云飞, 张国海, 刘崇怀, 樊秀彩, 姜建福, 孙海生, 张颖. Mlo基因在葡萄抗白腐病中作用的研究. 植物生理学报, 2017, 53:1649-1658. |
Jia Y F, Zhang G H, Liu C H, Fan X C, Jiang J F, Sun H S, Zhang Y. Study on the function of resistance to white rot of Mlo genes in grapevine. Plant Physiol J, 2017, 53:1649-1658 (in Chinese with English abstract). | |
[30] |
Acevedo-Garcia J, Gruner K, Reinstädler A, Kemen A, Kemen E, Cao L, Takken F L W, Reitz M U, Schäfer P, O’Connell R J, Kusch S, Kuhn H, Panstruga R. The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Sci Rep, 2017, 7:9319.
doi: 10.1038/s41598-017-07188-7 pmid: 28839137 |
[31] |
McGrann G R, Stavrinides A, Russell J, Corbitt M M, Booth A, Chartrain L, Thomas W T, Brown J K. A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J Exp Bot, 2014, 65:1025-1037.
doi: 10.1093/jxb/ert452 pmid: 24399175 |
[32] |
Shi J, Wan H, Zai W, Xiong Z, Wu W. Phylogenetic relationship of plant MLO genes and transcriptional response of MLO genes to Ralstonia solanacearum in tomato. Genes, 2020, 11:487.
doi: 10.3390/genes11050487 |
[33] |
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8:1274-1284.
doi: 10.1016/j.molp.2015.04.007 |
[34] |
Li C, Hao M, Wang W, Wang H, Chen F, Chu W, Zhang B, Mei D, Cheng H, Hu Q. An efficient CRISPR/Cas9 platform for rapidly generating simultaneous mutagenesis of multiple gene homeologs in allotetraploid oilseed rape. Front Plant Sci, 2018, 9:442.
doi: 10.3389/fpls.2018.00442 |
[35] |
Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact, 2011, 24:183-193.
doi: 10.1094/MPMI-07-10-0149 |
[36] | 何烈干, 宋来强, 汤洁, 周银生, 马辉刚. 油菜菌核病抗性鉴定方法比较及抗病种质资源的筛选. 江苏农业科学, 2018, 46(18):90-93. |
He L G, Song L Q, Tang J, Zhou Y S, Ma H G. Comparison of identification methods for resistance to Sclerotinia sclerotiorum and screening of resistant materials of rapeseed. Jiangsu Agric Sci, 2018, 46(18):90-93 (in Chinese). | |
[37] |
Zaidi S S, Mukhtar M S, Mansoor S. Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol, 2018, 36:898-906.
doi: 10.1016/j.tibtech.2018.04.005 |
[38] |
Sun Q, Lin L, Liu D, Wu D, Fang Y, Wu J, Wang Y. CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int J Mol Sci, 2018, 19:2716.
doi: 10.3390/ijms19092716 |
[39] | Naumann M, Somerville S, Voigt C. Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines. Plant Signal Behav, 2013, 8:e24408. |
[40] |
Bari R, Jones J D G. Role of plant hormones in plant defence responses. Plant Mol Biol, 2009, 69:473-488.
doi: 10.1007/s11103-008-9435-0 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[4] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[5] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[6] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[7] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[8] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[9] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[10] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[11] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[12] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[13] | 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903. |
[14] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[15] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
|