欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 801-811.doi: 10.3724/SP.J.1006.2022.14077

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性

石育钦1,2(), 孙梦丹1, 陈帆1, 成洪涛1,2, 胡学志1, 付丽1, 胡琼1,2, 梅德圣1,2,*(), 李超1,*()   

  1. 1中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
    2中国农业科学院研究生院, 北京 100081
  • 收稿日期:2021-04-25 接受日期:2021-07-12 出版日期:2022-04-12 网络出版日期:2021-08-13
  • 通讯作者: 梅德圣,李超
  • 作者简介:E-mail: shiyuqin514@163.com
  • 基金资助:
    中国农业科学院科技创新工程项目资助

Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L

SHI Yu-Qin1,2(), SUN Meng-Dan1, CHEN Fan1, CHENG Hong-Tao1,2, HU Xue-Zhi1, FU Li1, HU Qiong1,2, MEI De-Sheng1,2,*(), LI Chao1,*()   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-04-25 Accepted:2021-07-12 Published:2022-04-12 Published online:2021-08-13
  • Contact: MEI De-Sheng,LI Chao
  • Supported by:
    Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences

摘要:

基因编辑技术可以实现对目标基因高效准确的修饰, 为植物遗传改良开辟了新途径。霉菌抗性位点(Mildew resistance locus O, MLO)基因是植物对白粉病菌防御的主效负向调节因子, 突变后能增强植物对白粉病的抗性, 但在油菜中是否具有同样的功能尚未见报道。为解析该基因在油菜抗病中的功能, 本研究通过分析油菜接种核盘菌后基因的表达情况发现, BnMLO6基因受核盘菌诱导表达; 利用CRISPR/Cas9基因编辑技术获得了一份BnMLO6基因6个同源拷贝同时突变的材料mlo6-212。遗传分析表明, CRISPR/Cas9引起的BnMLO6基因突变能够稳定遗传; mlo6-212突变体在田间和温室条件下都表现出明显的白粉病抗性; 在接种核盘菌24 h后, 病斑面积显著低于野生型, 减小19.5%; BnMLO6基因突变能激发叶片胼胝质的自发堆积, 增强接菌后乙烯和茉莉酸抗病信号。因此, BnMLO6基因可能参与了多条抗病信号路径, 负向调控油菜对白粉病和菌核病的抗性。研究结果不仅为BnMLO6基因协同调控油菜多种病原菌抗性的研究提供了参考, 也为油菜抗病性遗传改良提供了抗性资源和技术支撑。

关键词: 油菜, 基因编辑, MLO, 白粉病, 菌核病

Abstract:

Gene editing technology can modify the target gene efficiently and accurately, which opens up a new way for crop genetic improvement. Mildew resistance locus O (MLO) gene is a key negative regulator of plant defense against powdery mildew. Mutation of MLO gene can enhance plant resistance to powdery mildew, but whether it has the same function is not reported in oilseed rape. In this study, the relative expression analysis suggested that BnMLO6 gene was induced by Sclerotinia sclerotiorum. To explore the potential role of BnMLO6 gene in pathogen resistance, six homologous copies of BnMLO6 gene mutated synchronously by CRISPR/Cas9 gene editing technology and mlo6-212 mutant line was generated for further analysis. Genetic analysis revealed that CRISPR/Cas9 induced mutagenesis of BnMLO6 gene could be stably inherited. In addition, mlo6-212 mutant line indicated obvious resistance to powdery mildew in both field and greenhouse condition. The lesion area of mlo6-212 mutant was reduced by 19.5% after 24 hours inoculation with S. sclerotiorum. Meanwhile, mutation of BnMLO6 gene could stimulate the spontaneous accumulation of callose in leaves and activate ethylene and jasmonic acid transduction pathway. Thus, BnMLO6 gene was probably involved in multiple pathogen resistance pathways to negatively regulate resistance to powdery mildew and S. sclerotiorum in oilseed rape. The results not only provide theoretical basis for the study of BnMLO6 involved resistance regulation of multiple pathogens, but also provide resistant resources and technical support for genetic improvement of disease resistance in oilseed rape.

Key words: oilseed rape, genome editing, MLO, powdery mildew, Sclerotinia sclerotiorum

表1

引物列表"

引物名称
Primer name
引物序列
Primer sequence (5¢-3¢)
扩增产物
Product length (bp)
Bnactin-RT-F TCTGGCATCACACTTTCTACAACGAGC 688
Bnactin-RT-R CAGGGAACATGGTCGAACCACC
MLO6-A03-RT-F2 ATCAGAAGAGTTGCAAGAGTATCC 603
MLO6-A03-RT-R2 GCCACAAACCAGATCACAGGAC
MLO6-C03-RT-F2 GCAGTAAATCCGAAGAGTTGAAAG 617
MLO6-C03-RT-R3 TGGTTGTGAGGAGGAATAGCAC
MLO6-A01-RT-F1 AGAACAAAAAAGCACTGTATGAAGG 1096
MLO6-A01-RT-R1 CACAGTTCTTGAGCTTGAACTCATA
MLO6-C01-RT-R1 TTCTTGTGGAAGCAGTTCTTGAG 952
MLO6-C01-RT-F2 CTCCGAGAGCATTGCAGCATCA
MLO6-A09-RT-F2 AGTGTGCAGAGAAGGGAAAAGTC 846
MLO6-A09-RT-R2 AGAGTTTCTTGGAGACAGCGTGT
MLO6-C09-RT-R1 TGTGTGTGGAACTTACCTGAGTCA 835
MLO6-C09-RT-F2 TGCAGAGAAGGGAAAGGTTGCT
NPTII-F GATGGATTGCACGCAGGT 1050
NPTII-R TCGTCAAGAAGGCGATAGA
MLO6-A03-F2 ATTTGGGTTTTTGTTACATATACCAATGTATA 669
MLO6-A03-R2 CTCTTTGTGTGTATGTGTTTGTGACTTACC
MLO6-C03-F2 TTCGGTTTTTTTTTTTTTTACATGAACC 678
MLO6-C03-R2 GAAAGATGTTAGTTTGATGTTTTCTCTCTG
MLO6-A01-F1 GGTCTTAACGGCATAGCAAAACGAT 677
MLO6-A01-R2 CGTGGAATTATTTTGTTTGCTTACCGT
MLO6-C01-F1 TTCTTACCGCATTGCAAAATGATTCTT 680
MLO6-C01-R2 TGTGGGATACTACTTTGCTTGCTTACC
MLO6-A09-F1 CTCAGAATGTTTCTGCATCCGATATCT 510
MLO6-A09-R3 CTTTTACTTACCCAACTGAAATTCTGATGAC
MLO6-C09-R1 GAATTGCTCTGCTTGCTTACCGTTG 619
MLO6-C09-F2 CAACAATCCCAGAACTAATATATTTGCTCT

表2

防御相关基因引物"

基因名称
Gene name
油菜中基因号
Gene name of B. napus
引物名称
Primer name
引物序列
Primer sequence (5¢-3¢)
扩增产物
Product length (bp)
BnORA059 BnaA10G0042700ZS ORA59-2-F ATCAATCCTTCCTCTCAGTTAGC 517
ORA59-2-R TCTTGATCCGTAACAATACTCTG
BnaC05G0044000ZS ORA59-3-F CAATCATTCCTCTCAGCTGTTAGC 553
ORA59-3-R CTTGATTCGTAACAACACTTTGTT
BnPR4 BnaA03G0296000ZS PR4-1-F CGCGTTTGCGGCTAAAACA 130
PR4-1-R TGGTTTCCTTTCCACGTTGAG
BnaA03G0296200ZS PR4-3-F CAGACTTAGCATAGCCATCATAT 214
PR4-3-R GCTCTCTCCAGAGCCGCTT
BnaC03G0354600ZS PR4-5-F AGCCGCTCAATCCGCTAATA 194
PR4-5-R TACCGCAAGAATCACGACCA
基因名称
Gene name
油菜中基因号
Gene name of B. napus
引物名称
Primer name
引物序列
Primer sequence (5¢-3¢)
扩增产物
Product length (bp)
BnPR4 BnaC03G0354700ZS PR4-6-F CAGACTTAGCATAACCCTCGTA 213
PR4-6-R CTCTCTCCGGAACCGCTTG
BnERF1 BnaA01G0293300ZS ERF1-1-F TCGTCCAACAACTACTCTCTCC 147
ERF1-1-R GTACGACTTCTCTGGCTTTCTTG
BnaC01G0362300ZS ERF1-2-F GGAATCTTTCTCCTCCTCGTCTT 153
ERF1-2-R TGACTTCTCTGGTTTTCTCGATG
BnERF2 BnaA09G0212800ZS ERF2-3-F AGATTTAGAACCGTCGTCGAAG 409
ERF2-3-R TATTTCTCCTCCGTTTCGGTGT
BnaC02G0416900ZS ERF2-4-F GAGTTGTATCACCGAATTTGTAG 320
ERF2-4-R ACGAAGACGATGAAGACGAAGTA
BnaC09G0247600ZS ERF2-6-F TAGATAAGCCCCCGGCTAATC 396
ERF2-6-R TCCGTTTCGGCGTCCCGTTA

图1

BnMLO6基因的核盘菌诱导表达分析"

图2

sgRNA设计以及载体构建"

图3

BnMLO6-C01拷贝基因PAGE电泳分型部分结果 M: DNA marker; 三角箭头表示编辑条带。"

图4

mlo6-212单株T0代BnMLO6基因靶点突变情况 A: DNA序列突变情况, 下画线部分表示PAM位点; B: 氨基酸序列变化情况, 红色表示变异。"

表3

mlo6-212株系T1代部分编辑情况"

T1代编号
Number of T1 generation
MLO6-A03 MLO6-C03 MLO6-A01 MLO6-C01 MLO6-A09 MLO6-C09
mlo6-212-1 -15 bp -13 bp +1 bp -12 bp -3 bp -2 bp
mlo6-212-3 -15 bp -13 bp -2 bp 无No mutation -3 bp -2 bp
mlo6-212-4 -15 bp -2 bp -2 bp -12 bp -3 bp -2 bp
mlo6-212-7 -15 bp -13 bp +1 bp 无No mutation 无No mutation 无No mutation
mlo6-212-8 -15 bp -13 bp -2 bp -12 bp -3 bp -2 bp
mlo6-212-9 -15 bp -13 bp -2 bp -12 bp -3 bp -2 bp
mlo6-212-10 -15 bp -13 bp +1 bp -12 bp 无No mutation 无 No mutation

图5

T1代编辑植株白粉病感病情况 A: 田间白粉病感染情况; B: 室内白粉病感染情况, 标尺为1 cm; C: mlo6-212的4个株系T2代白粉病田间感病情况。"

图6

T1代胼胝质观察及分析 A: 在显微镜下的胼胝质, 黑色箭头表示胼胝质, 标尺为30 mm; B: 每单个视野胼胝质沉积的数量。"

图7

T2代核盘菌接种抗性鉴定结果 A: 核盘菌侵染24 h后; B核盘菌侵染36 h后; 标尺为1 cm; C: 叶片菌斑面积分析; *表明在P < 0.05水平差异显著。"

图8

JA/ET信号通路基因接种前后的表达分析 每一行代表相关基因一个同源拷贝的表达量变化, 每个从上到下, BnERF2的3个拷贝为BnaA09G0212800ZS、BnaC02G0416900ZS、BnaC09G0247600ZS; BnERF1的2个拷贝为BnaA01G0293300ZS、BnaC01G0362300ZS; BnPR4的4个拷贝为BnaA03G0296000ZS、BnaA03G0296200ZS、BnaC03G0354600ZS、BnaC03G0354700ZS; BnOAR059的2个拷贝为BnaA10G0042700ZS、BnaC05G0044000ZS; 从左到右样品依次为野生型未接菌、突变体未接菌、野生型接菌24 h、突变体接菌24 h、野生型接菌36 h、突变体接菌36 h。"

[1] 李利霞, 陈碧云, 闫贵欣, 高桂珍, 许鲲, 谢婷, 张付贵, 伍晓明. 中国油菜种质资源研究利用策略与进展. 植物遗传资源学报, 2020, 21:1-19.
Li L X, Chen B Y, Yan G X, Gao G Z, Xu K, Xie T, Zhang F G, Wu X M. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China. J Plant Genet Resour, 2020, 21:1-19 (in Chinese with English abstract).
[2] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41:485-489.
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41:485-489 (in Chinese with English abstract).
[3] 孙祥良, 王华弟, 曹奎荣, 朱金良. 油菜菌核病对油菜千粒重及产量的影响. 浙江农业科学, 2014, 11:1732-1733.
Sun X L, Wang H D, Cao K R, Zhu J L. Effects of Sclerotinia sclerotinia on 1000-grain weight and yield of rapeseed. J Zhe jiang Agric Sci, 2014, 11:1732-1733 (in Chinese with English abstract).
[4] 吴健, 周永明, 王幼平. 油菜与核盘菌互作分子机理研究进展. 中国油料作物学报, 2018, 40:721-729.
Wu J, Zhou Y M, Wang Y P. Research progress on molecular mechanisms of Brassica napus-Sclerotinia sclerotiorum interaction. Chin J Oil Crop Sci, 2018, 40:721-729 (in Chinese with English abstract).
[5] 杨清坡, 刘万才, 黄冲. 近10年油菜主要病虫害发生危害情况的统计和分析. 植物保护, 2018, 44(3):24-30.
Yang Q P, Liu W C, Huang C. Statistics and analysis of oilseed rape losses caused by main diseases and insect pests in recent 10 years. Plant Prot, 2018, 44(3):24-30 (in Chinese with English abstract).
[6] Gaetán S, Madia M. First report of canola powdery mildew caused by Erysiphe polygoni in Argentina. Plant Dis, 2004, 88:1163.
doi: 10.1094/PDIS.2004.88.10.1163C pmid: 30795271
[7] 邵登魁. 油菜抗白粉病鉴定及相关的生理生化特性研究. 甘肃农业大学硕士学位论文,甘肃兰州, 2006.
Shao D K. Identification of Resistance to Erysiphe cruciferarum Junell and Study on Enzymes Associated with PM in Brassica Rape. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu,China, 2006 (in Chinese with English abstract).
[8] Tyagi S, Kumar R, Kumar V, Won S Y, Shukla P. Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crop Food, 2021, 12:125-144.
[9] 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37:953-973.
Shan Q W, Gao C X. Research progress of genome editing and derivative technologies in plants. Hereditas, 2015, 37:953-973 (in Chinese with English abstract).
[10] 刘耀光, 李构思, 张雅玲, 陈乐天. CRISPR/Cas植物基因组编辑技术研究进展. 华南农业大学学报, 2019, 40(5):38-49.
Liu Y G, Li G S, Zhang Y L, Chen L T. Current advances on CRISPR/Cas genome editing technologies in plants. J South China Agric Univ, 2019, 40(5):38-49 (in Chinese with English abstract).
[11] Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339:819-823.
doi: 10.1126/science.1231143 pmid: 23287718
[12] Sorek R, Lawrence C M, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem, 2013, 82:237-266.
doi: 10.1146/biochem.2013.82.issue-1
[13] Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J K. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant, 2013, 6:2008-2011.
doi: 10.1093/mp/sst121
[14] Xie K, Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant, 2013, 6:1975-1983.
doi: 10.1093/mp/sst119
[15] Upadhyay S K, Kumar J, Alok A, Tuli R. RNA-guided genome editing for target gene mutations in wheat. G3: Gen Genom Genet, 2013, 3:2233-2238.
[16] Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics, 2014, 41:63-68.
doi: 10.1016/j.jgg.2013.12.001 pmid: 24576457
[17] Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol, 2015, 87:99-110.
doi: 10.1007/s11103-014-0263-0
[18] Soyk S, Müller N A, Park S J, Schmalenbach I, Jiang K, Hayama R, Zhang L, Van Eck J, Jiménez-Gómez J M, Lippman Z B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet, 2017, 49:162-168.
doi: 10.1038/ng.3733
[19] Braatz J, Harloff H J, Mascher M, Stein N, Himmelbach A, Jung C. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol, 2017, 174:935-942.
doi: 10.1104/pp.17.00426
[20] Jørgensen I H. Discovery, characterization and exploitation of MLO powdery mildew resistance in barley. Euphytica, 1992, 63:141-152.
doi: 10.1007/BF00023919
[21] Devoto A, Hartmann H A, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh C S, Cohen F E, Emerson B C, Schulze-Lefert P, Panstruga R. Molecular phylogeny and evolution of the plant- specific seven-transmembrane MLO family. J Mol Evol, 2003, 56:77-88.
doi: 10.1007/s00239-002-2382-5
[22] Liu Q, Zhu H. Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene, 2008, 409:1-10.
doi: 10.1016/j.gene.2007.10.031
[23] Konishi S, Sasakuma T, Sasanuma T. Identification of novel MLO family members in wheat and their genetic characterization. Genes Genet Syst, 2010, 85:167-175.
pmid: 21041976
[24] Zhou S J, Jing Z, Shi J L. Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus. Genet Mol Res, 2013, 12:6565-6578.
doi: 10.4238/2013.December.11.8 pmid: 24391003
[25] Wolter M, Hollricher K, Salamini F, Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet, 1993, 239:122-128.
doi: 10.1007/BF00281610
[26] Ropenack E V, Parr A, Schulze-Lefert P. Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J Biol Chem, 1998, 273:9013-9022.
doi: 10.1074/jbc.273.15.9013
[27] Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins N C, Panstruga R, Schulze-Lefert P. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol, 2002, 129:1076-1085.
pmid: 12114562
[28] Kuhn H, Lorek J, Kwaaitaal M, Becker K, Micali C, Ver Loren van Themaat E, Bednarek P, Raaymakers T M, Appiano M, Bai Y, Meldau D, Baum S, Conrath U, Feussner I, Panstruga R. Key components of different plant defense pathways are dispensable for powdery mildew resistance of the Arabidopsis mlo2 mlo6 mlo12 triple mutant. Front Plant Sci, 2017, 8:1006.
doi: 10.3389/fpls.2017.01006
[29] 贾云飞, 张国海, 刘崇怀, 樊秀彩, 姜建福, 孙海生, 张颖. Mlo基因在葡萄抗白腐病中作用的研究. 植物生理学报, 2017, 53:1649-1658.
Jia Y F, Zhang G H, Liu C H, Fan X C, Jiang J F, Sun H S, Zhang Y. Study on the function of resistance to white rot of Mlo genes in grapevine. Plant Physiol J, 2017, 53:1649-1658 (in Chinese with English abstract).
[30] Acevedo-Garcia J, Gruner K, Reinstädler A, Kemen A, Kemen E, Cao L, Takken F L W, Reitz M U, Schäfer P, O’Connell R J, Kusch S, Kuhn H, Panstruga R. The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Sci Rep, 2017, 7:9319.
doi: 10.1038/s41598-017-07188-7 pmid: 28839137
[31] McGrann G R, Stavrinides A, Russell J, Corbitt M M, Booth A, Chartrain L, Thomas W T, Brown J K. A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J Exp Bot, 2014, 65:1025-1037.
doi: 10.1093/jxb/ert452 pmid: 24399175
[32] Shi J, Wan H, Zai W, Xiong Z, Wu W. Phylogenetic relationship of plant MLO genes and transcriptional response of MLO genes to Ralstonia solanacearum in tomato. Genes, 2020, 11:487.
doi: 10.3390/genes11050487
[33] Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8:1274-1284.
doi: 10.1016/j.molp.2015.04.007
[34] Li C, Hao M, Wang W, Wang H, Chen F, Chu W, Zhang B, Mei D, Cheng H, Hu Q. An efficient CRISPR/Cas9 platform for rapidly generating simultaneous mutagenesis of multiple gene homeologs in allotetraploid oilseed rape. Front Plant Sci, 2018, 9:442.
doi: 10.3389/fpls.2018.00442
[35] Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact, 2011, 24:183-193.
doi: 10.1094/MPMI-07-10-0149
[36] 何烈干, 宋来强, 汤洁, 周银生, 马辉刚. 油菜菌核病抗性鉴定方法比较及抗病种质资源的筛选. 江苏农业科学, 2018, 46(18):90-93.
He L G, Song L Q, Tang J, Zhou Y S, Ma H G. Comparison of identification methods for resistance to Sclerotinia sclerotiorum and screening of resistant materials of rapeseed. Jiangsu Agric Sci, 2018, 46(18):90-93 (in Chinese).
[37] Zaidi S S, Mukhtar M S, Mansoor S. Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol, 2018, 36:898-906.
doi: 10.1016/j.tibtech.2018.04.005
[38] Sun Q, Lin L, Liu D, Wu D, Fang Y, Wu J, Wang Y. CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int J Mol Sci, 2018, 19:2716.
doi: 10.3390/ijms19092716
[39] Naumann M, Somerville S, Voigt C. Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines. Plant Signal Behav, 2013, 8:e24408.
[40] Bari R, Jones J D G. Role of plant hormones in plant defence responses. Plant Mol Biol, 2009, 69:473-488.
doi: 10.1007/s11103-008-9435-0
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[9] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[10] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[11] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[12] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[13] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
[14] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[15] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!