欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 993-996.doi: 10.3724/SP.J.1006.2021.04993

• 专题:主要麻类作物基因组学与遗传改良 •    下一篇

专题导读: 加强麻类作物基因组学研究, 推动优异等位基因发掘及种质创新

张立武1,2,3()   

  1. 1福建农林大学农学院作物遗传育种与综合利用教育部重点实验室/福建省作物设计育种重点实验室, 福建福州 350002
    2福建农林大学农业农村部东南黄红麻实验观测站/福建省麻类种质资源共享平台/福建省南方经济作物遗传育种与多用途开发国际科技合作基地, 福建福州 350002
    3福建农林大学海峡联合研究院基因组与生物技术中心, 福建福州 350002
  • 出版日期:2021-06-12 网络出版日期:2021-04-02
  • 作者简介:张立武, E-mail: lwzhang@fafu.edu.cn; zhang_liwu@hotmail.com
  • 基金资助:
    国家自然科学基金项目(31771369);国家自然科学基金项目(31972968);国家现代农业产业技术体系建设专项(CARS-19-E06)

Editorial: Strengthening the researches of genomics of bast fiber crops to promote elite allele mining and germplasm innovation

Zhang Li-wu1,2,3()   

  1. 1Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops/Fujian Provincial Key Laboratory for Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China/Public Platform of Fujian for Germplasm Resources of Bast Fiber Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Published:2021-06-12 Published online:2021-04-02
  • Supported by:
    The National Natural Science Foundation of China(31771369);The National Natural Science Foundation of China(31972968);The China Agriculture Research System(CARS-19-E06)
[1] 张力岚, 王俊, 万雪贝, 徐益, 张列梅, 方平平, 祁建民, 张立武. 主要麻类作物的ITS序列分析与系统进化. 作物学报, 2017,43:862-874.
Zhang L L, Wang J, Wan X B, Xu Y, Zhang L M, Fang P P, Qi J M, Zhang L W. Analysis of internal transcribed spacers (ITS) sequences and phylogenetics of main bast fiber crops. Acta Agron Sin, 2017,43:862-874 (in Chinese with English abstract).
[2] Islam M S, Saito J A, Emdad E M, Ahmed B, Islam M M, Halim A, Hossen Q M, Hossain M Z, Ahmed R, Hossain M S, Kabir S M, Khan M S, Khan M M, Hasan R, Aktar N, Honi U, Islam R, Rashid M M, Wan X, Hou S, Haque T, Azam M S, Moosa M M, Elias S M, Hasan A M, Mahmood N, Shafiuddin M, Shahid S, Shommu N S, Jahan S, Roy S, Chowdhury A, Akhand A I, Nisho G M, Uddin K S, Rabeya T, Hoque S M, Snigdha A R, Mortoza S, Matin S A, Islam M K, Lashkar M Z, Zaman M, Yuryev A, Uddin M K, Rahman M S, Haque M S, Alam M M, Khan H, Alam M. Comparative genomics of two jute species and insight into fibre biogenesis. Nat Plants, 2017,3:16223.
[3] Zhang L W, Ibrahim A K, Niyitanga S, Zhang L M, Qi J M. Jute (Corchorus spp.) breeding. In: Al-Khayri J, Jain S, Johnson D, eds. Advances in Plant Breeding Strategies: Industrial and Food Crops. Cham: Springer, 2019. pp85-113.
[4] Zhang L W, Xu Y, Zhang X T, Ma X K, Zhang L L, Liao Z Y, Zhang Q, Wan X B, Cheng Y, Zhang J S, Li D X, Zhang L M, Xu J T, Tao A F, Lin L H, Fang P P, Chen S, Qi R, Xu X M, Qi J, Ming R. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fibre and leaf shape biogenesis. Plant Biotechnol J, 2020,18:1796-1809.
pmid: 31975524
[5] Liu C, Zeng L B, Zhu S Y, Wu L Q, Wang Y Z, Tang S W, Wang H W, Zheng X, Zhao J, Chen X R, Dai Q Z, Liu T M. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud.). DNA Res, 2018,25:173-181.
[6] Luan M B, Jian J B, Chen P, Chen J H, Chen J H, Gao Q, Gao G, Zhou J H, Chen K M, Guang X M, Chen J K, Zhang Q Q, Wang X F, Fang L, Sun Z M, Bai M Z, Fang X D, Zhao S C, Xiong H P, Yu C M, Zhu A G. Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich. Mol Ecol Resour, 2018,18:639-645.
doi: 10.1111/1755-0998.12766 pmid: 29423997
[7] Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith D W, Grassa C J, Geraldes A, Cronk Q C, Cullis C, Dash P K, Kumar P A, Cloutier S, Sharpe A G, Wong G K, Wang J, Deyholos M K. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads Plant J, 2012,72:461-473.
[8] Zhang J P, Qi Y N, Wang L M, Wang L L, Yan X C, Dang Z, Li W J, Zhao W, Pei X W, Li X M, Liu M, Tan M L, Wang L, Long Y, Wang J, Zhang X W, Dang Z H, Zheng H K, Liu T M. Genomic comparison and population diversity analysis provide insights into the domestication and improvement of flax. iScience, 2020,23:100967.
pmid: 32240956
[9] Bakel H V, Stout J M, Cote A G, Tallon C M, Sharpe A G, Hughes T R, Page J E. The draft genome and transcriptome of Cannabis sativa Genome Biol, 2011,12:R102.
[10] Gao S, Wang B, Xie S, Xu X, Zhang J, Pei L, Yu Y, Yang W, Zhang Y. A high-quality reference genome of wild Cannabis sativa. Hortic Res, 2020,7:73.
[11] 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望. 作物学报, 2021,47:997-1019.
Xu Y, Zhang L L, Qi J M, Zhang L M, Zhang L W. Genomics and genetic improvement in main bast fiber crops: advances and perspectives. Acta Agron Sin, 2021,47:997-1019 (in Chinese with English abstract).
[12] Fang S, Zhang L, Qi J, Zhang L. De novo assembly of chloroplast genomes of Corchorus capsularis and C. olitorius yields species- specific InDel markers. Crop J, 2020,9:216-226.
[13] 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析. 作物学报, 2021,47:1020-1030.
Li F, Wang Y Z, Yan L, Zhu S Y, Liu T M. Characterization of the expression profiling of circRNAs in the barks of stems. Acta Agron Sin, 2021,47:1020-1030 (in Chinese with English abstract).
[14] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析. 作物学报, 2021,47:1082-1089.
Huang X, Xi J G, Chen T, Qin X, Tan S B, Chen H L, Yi K X. Identification and expression of PAL genes in sisal. Acta Agron Sin, 2021,47:1082-1089 (in Chinese with English abstract).
[15] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析. 作物学报, 2021,47:1054-1069.
Yin M, Yang D W, Tang H J, Pan G, Li D F, Zhao L N, Huang S Q. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.). Acta Agron Sin, 2021,47:1054-1069 (in Chinese with English abstract).
[16] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析. 作物学报, 2021,47:1070-1081.
Huang W G, Jiang W D, Yao Y B, Song X X, Liu Y, Chen S, Zhao D S, Wu G W, Yuan H M, Ren C Y, Sun Z Y, Wu J Z, Kang Q H. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress. Acta Agron Sin, 2021,47:1070-1081 (in Chinese with English abstract).
[17] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥. 作物学报, 2021,47:1090-1099.
Li H, Li D F, Deng Y, Pan G, Chen A G, Zhao L N, Tang H J. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis Acta Agron Sin, 2021,47:1090-1099 (in Chinese with English abstract).
[18] 周步进, 李刚, 金刚, 周瑞阳, 刘冬梅, 汤丹峰, 廖小芳, 刘一丁, 赵艳红, 王颐宁. 利用HcPDIL5-2a非全长基因创制红麻雄性不育新种质. 作物学报, 2021,47:1043-1053.
Zhou B J, Li G, Jin G, Zhou R Y, Liu D M, Tang D F, Liao X F, Liu Y D, Zhao Y H, Wang Y N. Creation of male sterile germplasm using the partial length gene of HcPDIL5-2a in kenaf. Acta Agron Sin, 2021,47:1043-1053 (in Chinese with English abstract).
[19] 熊和平. 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008. pp5-8.
Xiong H P. Breeding Sciences of Bast and Leaf Fiber Crops. Beijing: China Agricultural Science and Technology Press, 2008. pp 5-8(in Chinese).
[20] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析. 作物学报, 2021,47:1031-1042.
Li Z Q, Ding X C, Lu H, Hu Y L, Yue J, Huang Z, Mo L Y, Chen L, Chen T, Chen P. Physiological characteristics and DNA methylation analysis under lead stress in kenaf (Hibiscus cannabinus L.). Acta Agron Sin, 2021,47:1031-1042 (in Chinese with English abstract).
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!