欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (03): 405-413.doi: 10.3724/SP.J.1006.2015.00405

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜及其亲本物种甲基化酶I基因的克隆及表达模式

谭河林1,许欣颖1,付立曼1,向小娥2,李剑桥1,郭昊伦1,叶文雪1   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室, 江苏南京210095;2南京农业大学动物科学类国家教学示范中心,江苏南京210095
  • 收稿日期:2014-09-03 修回日期:2014-12-19 出版日期:2015-03-12 网络出版日期:2015-01-12
  • 基金资助:

    本研究由江苏省自然科学基金项目(BK2012767)和中央高校基本科研业务费专项(KYZ201301)资助。

Cloningand Expression Pattern of DNA Methylase I (MET1) from Brassica napus L. and Its Progenitors

TAN He-Lin1,*,XU Xin-Ying1,FU Li-Man1,XIANG Xiao-E2,LI Jian-Qiao1,GUO Hao-Lun1,YE Wen-Xue1   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China;2Animal Sciences National Teaching Demonstration Center,Nanjing Agricultural University, Nanjing 210095, China
  • Received:2014-09-03 Revised:2014-12-19 Published:2015-03-12 Published online:2015-01-12

摘要:

DNA甲基化作为一种表观遗传调控方式,在植物体生长发育中起重要作用,而甲基转移酶I (DNA methylase I, MET1)在甲基化过程中起主要作用。本研究克隆到5个油菜BnMET1同源基因,并比较白菜BrMET1、甘蓝BoMET1和油菜BnMET1同源基因的进化以及其表达模式。结果显示白菜和甘蓝MET1同源基因在进化中较为保守,而油菜BnMET1基因结构发生较大改变;部分油菜BnMET1同源基因表达发生沉默,而激活表达的BnMET1表达模式较其亲本白菜和甘蓝直系MET1同源基因发生明显的改变。上述结果表明BnMET1同源基因通过改变基因结构以及表达模式影响油菜组织中BnMET1基因剂量,从而调节油菜的生长发育。

关键词: DNA甲基化, 甲基化酶I, 基因进化, 基因差异表达

Abstract:

Methylation in genomic DNA, a way of epigenetic regulation, plays animportant role during the growth and development of plant. As allotetraploid oilseeds plant, Brassica napus (AACC, 2n=38) originated from the natural cross between Brassica rapa (AA, 2n=20) and Brassica oleracea (CC, 2n=18), containing duplicate genes. Here, we isolated and characterized five Brassica napus BnMET1s, which are orthologous gene of Arabidopsis AtMET1 acted as transferase in DNA methylation. Our results showed that there were conspicuous variations in gene structuresof BnMET1s compared with its orthologos of BrMET1 and BoMET1, leading to more abundant divergences in coding region of BnMET1s. Moreover, we found that some divergences among BnMET1paralogous genes were derived from its progenitor orthologousgenes of Brassica rapa or Brassica oleracea. Furthermore, the transcription analysis indicated that partialBnMET1paralogs were silence,and the expression patternsof the activated BnMET1were altered in contrast to its BoMET1 orthologs in Brassica oleracea and BrMET1 orthologs in Brassica rapa. Taken all these together, we speculated that duplicate BnMET1s regulate the development process ofBrassica napuswitha certain gene dosagekept by alteringtheir gene structures and spatio-temporal expression patterns.

Key words: DNA methylation, MET1 geneGene evolution, Differential expression

[1]Finnegan E J, Genger R K, Peacock W J, Dennis E S. DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 223–247

[2]Saze H, Sasaki T, Kakutani T. Negative regulation of DNA methylation in plants. Epigenetics, 2008, 3: 122–124

[3]Teixeira F K, Colot V. Gene body DNA methylation in plants: a means to an end or an end to a means? EMBO J, 2009, 28: 997–998

[4]Finnegan E J, Kovac K A, Jaligot E, Sheldon C C, Peacock W J, Dennis E S. The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J, 2005, 44: 420–432

[5]Vanyushin B F, Kirnos M D. DNA methylation in higher plants: past, present and future. Biochim Biophys Acta, 2011, 1809: 360–368

[6]Vanyushin B F. DNA methylation in plants. Curr Top Micro-biol Immunol, 2006, 301: 67–122

[7]Meyer P. DNA methylation systems and targets in plants. FEBS Lett, 2011, 585: 2008–2015

[8]Law J A, Jacobsen S E. Establishing, maintaining and modi-fying DNA methylation patterns in plants and animals. Nat Rev Genet, 2010, 11: 204–220

[9]夏晗, 刘美芹, 尹伟伦, 卢存福, 夏新莉. 植物DNA甲基化调控因子研究进展. 遗传, 2008, 30: 426–432

Xia H, Liu M Q, Yi W L, Lu C F, Xia X L. DNA methylation regulating factors in plants. Hereditas (Beijing), 2008, 30: 426–432 (in Chinese with English abstract)

[10]Finnegan E J, Peacock W J, Dennis E S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA, 1996, 93: 8449–8454

[11]Apashkin V V, Kutueva L I, Vaniushin B F. Is the cytosine DNA methyltransferase gene MET1 regulated by DNA methylation in Arabidopsis thaliana plants? Genetika, 2011, 47: 320–331

[12]Kankel M W, Ramsey D E, Stokes T L, Flowers S K, Haag J R, Jeddeloh J A, Riddle N C, Verbsky M L, Richards E J. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics, 2003, 163: 1109–1122

[13]Soppe W J, Jacobsen S E, Alonso-Blanco C, Jackson J P, Kakutani T, Koornneef M, Peeters A J. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell, 2000, 6: 791–802

[14]闫延涛. 普通小麦中春化基因VRN1及甲基转移酶基因的克隆及表达. 河南农业大学硕士学位论文, 河南郑州 2010

Yan Y T. Cloning and expression of the vernalization gene VRN1 and DNA methyltransferase in Wheat. MS Thesis of Henan              Agricultural University, Zhengzhou, China, 2010 (in Chinese with English abstract)

[15]Nakano Y, Steward N, Sekine M, Kusano T, Sano H. A tobacco NtMET1 cDNA encoding a DNA methyltransferase: molecular characterization and abnormal phenotype of transgene tobacco plants. Plant Cell Physiol, 2000, 41: 448–457

[16]Chang L, Zhang Z, Han B, Li H, Dai H, He P, Tian H. Isolation of DNA methyltransferase genes from strawberry (Fragaria × ananassa Duch.) and their expression in relation to micropropagation. Plant Cell Rep, 2009, 28: 1373–1384

[17]Steward N, Kusano T, Sano H. Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells but also with altered DNA methylation status in cold-stressed quiescent cells. Nucl Acids Res, 2000, 28: 3250–3259

[18]Zhang T, Zhao X, Wang W, Pan Y, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS One, 2012, 7: e43274



.......

[1] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[2] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[3] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[4] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[5] 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603.
[6] 李永辉,陈琳琳,孙炳剑,王利民,邢小萍,袁虹霞,丁胜利*,李洪连*. 假禾谷镰孢侵染小麦后3种植物激素相关基因的差异表达分析[J]. 作物学报, 2017, 43(11): 1632-1642.
[7] 张旸,胡中影,赵月明,李娜,解莉楠. 羽衣甘蓝自交不亲和与自交亲和系种子萌发期DNA甲基化的动态变化[J]. 作物学报, 2016, 42(04): 532-539.
[8] 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055.
[9] 黄志熊,王飞娟,蒋晗,李志兰,丁艳菲,江琼,陶月良,朱诚. 两个水稻品种镉积累相关基因表达及其分子调控机制[J]. 作物学报, 2014, 40(04): 581-590.
[10] 吴绍华,张红宇,薛晶晶,徐培洲,吴先军. 双胚苗水稻来源的单倍体、二倍体及其杂交F1的DNA甲基化位点分析[J]. 作物学报, 2013, 39(01): 50-59.
[11] 高桂珍, 应菲, 陈碧云, 李浩, 吕晓丹, 闫贵欣, 许鲲, 伍晓明. 热胁迫过程中白菜型油菜种子DNA的甲基化[J]. 作物学报, 2011, 37(09): 1597-1604.
[12] 朱新霞,朱一超,艾尼江,刘任重,张天真. 中棉所12及其选系配制的4个杂交棉幼苗期基因差异表达[J]. 作物学报, 2009, 35(9): 1637-1645.
[13] 李雪林,林忠旭,聂以春,郭小平,张献龙. 盐胁迫下棉花基因组DNA表观遗传变化的MSAP分析[J]. 作物学报, 2009, 35(4): 588-596.
[14] 李永春;孟凡荣;王潇;陈雷;任江萍;牛洪斌;李磊;尹钧. 水分胁迫条件下“洛旱2号”小麦根系的基因表达谱[J]. 作物学报, 2008, 34(12): 2126-2133.
[15] 张一;倪中福;姚颖垠;孙其信. 小麦杂交种与亲本之间穗下节间基因差异表达分析[J]. 作物学报, 2008, 34(05): 770-776.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!