欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (03): 414-421.doi: 10.3724/SP.J.1006.2015.00414

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米小分子热激蛋白ZmHSP17.7基因的克隆与功能分析

孙爱清1,**,葛淑娟2,**,董伟2,单晓笛3,董树亭1,*,张杰道2,*   

  1. 1山东农业大学农学院 / 作物生物学国家重点实验室 / 山东省作物生物学重点实验室, 山东泰安 271018; 2山东农业大学生命科学学院, 山东泰安 271018; 3安徽大学生命科学学院, 安徽合肥230036
  • 收稿日期:2014-06-30 修回日期:2014-12-19 出版日期:2015-03-12 网络出版日期:2014-12-29
  • 通讯作者: 董树亭, E-mail: stdong@sdau.edu.cn; 张杰道, E-mail: jdzhang@sdau.edu.cn
  • 基金资助:

    本研究由中国博士后科学基金(2012M511053)和国家转基因生物新品种培育重大专项(2013ZX08011-006)资助。

Cloning and Functional Analysis of Small Heat Shock Protein Gene ZmHSP17.7 from Maize

SUN Ai-Qing1,**,GE Shu-Juan2,**,DONG Wei2,SHAN Xiao-Di3,DONG Shu-Ting1,*,ZHANG Jie-Dao2,*   

  1. 1 State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology / College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; 2 College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; 3 College of Life Sciences, Anhui University, Hefei 230036, China
  • Received:2014-06-30 Revised:2014-12-19 Published:2015-03-12 Published online:2014-12-29
  • Contact: 董树亭, E-mail: stdong@sdau.edu.cn; 张杰道, E-mail: jdzhang@sdau.edu.cn

摘要:

植物热激蛋白是一类代表性高温响应蛋白。以玉米种质POB21为材料,克隆了一个CDS序列长度为477 bp的小分子热激蛋白基因。该基因编码的蛋白含158个氨基酸,具有HSP20蛋白典型的ACD结构域,预测的等电点为5.36,分子量为17.746 kD,被命名为ZmHSP17.7。在水稻、拟南芥等植物基因组中都有其同源基因,进化和亚细胞定位分析表明此基因属CI类小分子热激蛋白家族成员。Northern杂交分析表明,高温快速诱导ZmHSP17.7基因表达,15%PEG模拟干旱胁迫不诱导该基因表达,但在复合胁迫下干旱增强了高温的诱导效果。外源ABA也不影响该基因的表达。与野生型拟南芥相比,超表达ZmHSP17.7的转基因拟南芥在种子萌发和植株生长过程中表现出更强的高温和干旱耐受性,说明该基因可以在植物防御高温、干旱及复合胁迫中发挥一定作用。

关键词: 玉米, 小分子热激蛋白, 高温, 胁迫抗性

Abstract:

Heat shock proteins are typical proteins responding to high temperature. Maize germplasm POB21 was used to isolate a small heat-shock protein gene with 477 bp CDS sequence. This gene encodes a protein with 158 amino acids, which contains the typical ACD domain of HSP20 proteins. Isoelectronic point of ZmHSP17.7 is predicted to be 5.36. It encodes a 17.746 kD protein, and so named as ZmHSP17.7. The homologues can be found in diverse plants such as Arabidopsis and rice. According to the phylogenetic and subcellular localization analyses of this protein, it is a member of CI class of small heat shock protein family. Upon northern blotting analysis, gene expression of ZmHSP17.7 was quickly induced by high temperature. Drought stress under 15% PEG did not independently regulate the gene expression, but enhanced the heat-induced gene expression under combined stress of high temperature and drought. Exogenous ABA did not affect gene expression. The overexpression of ZmHSP17.7 gene in seed germination and plant growth of Arabidopsis showed higher tolerance to stresses of high temperature and drought, indicating that this gene may play a certain role in protecting plant from high temperature, drought and combined stress.

Key words: Maize, Small heat-shock protein, High temperature, Stress resistance

[1]Hansen J, Sato M, Ruedy R, Lo K, Lea D W, Medina-Elizade M. Global temperature change. Proc Nat Acad Sci USA, 2006, 103: 14288–14293



[2]Shaw R H. Estimates of yield reductions in corn caused by water and temperature stress. In: Ruper C D, Kramer P J. Crop Reactions to Water and Temperature Stresses in Humid, Temperature Climates. Proceedings, Westview Press, Boulder Co. 1983. pp 49–65



[3]Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell, 2006, 125: 443–451



[4]Schlesinger M J. Heat shock proteins. J Biol Chem, 1990, 265: 12111–12114



[5]Sanmiya K, Suzuki K, Egawa Y, Shono M. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett, 2004, 557: 265–268



[6]Qiu X B, Shao Y M, Miao S, Wang L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci, 2006, 63: 2560–2570



[7]Sun W, Van Montagu M, Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta, 2002, 1577: 1–9



[8]Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 2004, 9: 244–252



[9]Caspers G J, Leunissen J A M, de Jong W W. The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. J Mol Evol, 1995, 40: 238–248



[10]Bondino H G, Valle E M, Ten Have A. Evolution and functional diversification of the small heat shock protein/alpha-crystallin family in higher plants. Planta, 2012, 235: 1299–1313



[11]Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf K D. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperon, 2008, 13: 183–197



[12]Waters E R. The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot, 2013, 64: 391–403



[13]Sun W, Bernard C, Van de Cotte B, Van Montagu M, Verbruggen N. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J, 2001, 27: 407–415



[14]Härndahl U, Hall R B, Osteryoung K W, Vierling E, Bornman J F, Sundby C. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperon, 1999, 4: 129–138



[15]Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Tsang E W T, Jiang L, Wu K, Huang S. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep, 2012, 31: 379–389



[16]Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed, 2004, 13: 165–175



[17]Sato Y, Yokoya S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep, 2008, 27: 329–334



[18]Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ, 2009, 32: 1046–1059



[19]Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, Wang L, Li D, Yang X. ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep, 2012, 31: 1473–1484



[20]Klein R D, Chidawanyika T, Tims H S, Meulia T, Bouchard R A, Pett V B. Chaperone function of two small heat shock proteins from maize. Plant Sci, 2014, 221/222: 48–58



[21]Cao Z, Jia Z, Liu Y, Wang M, Zhao J, Zheng J, Wang G. Constitutive expression of ZmsHSP in Arabidopsis enhances their cytokinin sensitivity. Mol Biol Rep, 2010, 37: 1089–1097



[22]Lund A A, Rhoads D M, Lund A L, Cerny R L, Elthon T E. In vivo modifications of the maize mitochondrial small heat stress protein, HSP22. J Biol Chem, 2001, 276: 29924–29929



[23]Todorov D, Alexieva V, Karanov E. Effect of putrescine, 4-PU-30, and abscisic acid on maize plants grown under normal, drought, and rewatering conditions. J Plant Growth Regul, 1998, 17: 197–203



[24]Xu C, Jing R, Mao X, Jia X, Chang X. A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann Bot, 2007, 99: 439–450



[25]Zhang X, Henriques R, Lin S S, Niu Q W, Chua N H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc, 2006, 1: 641–646



[26]Ruibal C, Castro A, Carballo V, Szabados L, Vidal S. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4. BMC Plant Biol, 2013, 13: 174



[27]Sarkar N K, Kim Y K, Grover A. Rice sHSP genes: genomic organization and expression profiling under stress and development. BMC Genomics, 2009, 10: 393–410



[28]Pegoraro C, Mertz L M, da Maia L C, Rombaldi C V, de Oliveira A C. Importance of heat shock proteins in Maize. J Crop Sci Biotech, 2011, 14: 85–95



[29]Chauhan H, Khurana N, Nijhavan A, Khurana J P, Khurana P. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ, 2012, 35: 1912–1931



[30]Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X, Peng L, Zhang L, Lu C. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell, 2013, 25: 2925–2943



[31]Barrero J M, Rodríguez P L, Quesada V, Piqueras P, Ponce M R, Micol J L. Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ, 2006, 29: 2000–2008



[32]Sun X, Hu C, Tan Q, Liu J, Liu H. Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Ann Bot, 2009, 104: 345-356

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!