[1]Hansen J, Sato M, Ruedy R, Lo K, Lea D W, Medina-Elizade M. Global temperature change. Proc Nat Acad Sci USA, 2006, 103: 14288–14293
[2]Shaw R H. Estimates of yield reductions in corn caused by water and temperature stress. In: Ruper C D, Kramer P J. Crop Reactions to Water and Temperature Stresses in Humid, Temperature Climates. Proceedings, Westview Press, Boulder Co. 1983. pp 49–65
[3]Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell, 2006, 125: 443–451
[4]Schlesinger M J. Heat shock proteins. J Biol Chem, 1990, 265: 12111–12114
[5]Sanmiya K, Suzuki K, Egawa Y, Shono M. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett, 2004, 557: 265–268
[6]Qiu X B, Shao Y M, Miao S, Wang L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci, 2006, 63: 2560–2570
[7]Sun W, Van Montagu M, Verbruggen N. Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta, 2002, 1577: 1–9
[8]Wang W, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 2004, 9: 244–252
[9]Caspers G J, Leunissen J A M, de Jong W W. The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. J Mol Evol, 1995, 40: 238–248
[10]Bondino H G, Valle E M, Ten Have A. Evolution and functional diversification of the small heat shock protein/alpha-crystallin family in higher plants. Planta, 2012, 235: 1299–1313
[11]Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf K D. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperon, 2008, 13: 183–197
[12]Waters E R. The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot, 2013, 64: 391–403
[13]Sun W, Bernard C, Van de Cotte B, Van Montagu M, Verbruggen N. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J, 2001, 27: 407–415
[14]Härndahl U, Hall R B, Osteryoung K W, Vierling E, Bornman J F, Sundby C. The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress Chaperon, 1999, 4: 129–138
[15]Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Tsang E W T, Jiang L, Wu K, Huang S. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep, 2012, 31: 379–389
[16]Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed, 2004, 13: 165–175
[17]Sato Y, Yokoya S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep, 2008, 27: 329–334
[18]Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ, 2009, 32: 1046–1059
[19]Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, Wang L, Li D, Yang X. ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep, 2012, 31: 1473–1484
[20]Klein R D, Chidawanyika T, Tims H S, Meulia T, Bouchard R A, Pett V B. Chaperone function of two small heat shock proteins from maize. Plant Sci, 2014, 221/222: 48–58
[21]Cao Z, Jia Z, Liu Y, Wang M, Zhao J, Zheng J, Wang G. Constitutive expression of ZmsHSP in Arabidopsis enhances their cytokinin sensitivity. Mol Biol Rep, 2010, 37: 1089–1097
[22]Lund A A, Rhoads D M, Lund A L, Cerny R L, Elthon T E. In vivo modifications of the maize mitochondrial small heat stress protein, HSP22. J Biol Chem, 2001, 276: 29924–29929
[23]Todorov D, Alexieva V, Karanov E. Effect of putrescine, 4-PU-30, and abscisic acid on maize plants grown under normal, drought, and rewatering conditions. J Plant Growth Regul, 1998, 17: 197–203
[24]Xu C, Jing R, Mao X, Jia X, Chang X. A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann Bot, 2007, 99: 439–450
[25]Zhang X, Henriques R, Lin S S, Niu Q W, Chua N H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc, 2006, 1: 641–646
[26]Ruibal C, Castro A, Carballo V, Szabados L, Vidal S. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4. BMC Plant Biol, 2013, 13: 174
[27]Sarkar N K, Kim Y K, Grover A. Rice sHSP genes: genomic organization and expression profiling under stress and development. BMC Genomics, 2009, 10: 393–410
[28]Pegoraro C, Mertz L M, da Maia L C, Rombaldi C V, de Oliveira A C. Importance of heat shock proteins in Maize. J Crop Sci Biotech, 2011, 14: 85–95
[29]Chauhan H, Khurana N, Nijhavan A, Khurana J P, Khurana P. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ, 2012, 35: 1912–1931
[30]Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X, Peng L, Zhang L, Lu C. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell, 2013, 25: 2925–2943
[31]Barrero J M, Rodríguez P L, Quesada V, Piqueras P, Ponce M R, Micol J L. Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ, 2006, 29: 2000–2008
[32]Sun X, Hu C, Tan Q, Liu J, Liu H. Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Ann Bot, 2009, 104: 345-356 |