欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (3): 451-461.doi: 10.3724/SP.J.1006.2021.92002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证

沈文强(), 赵冰冰(), 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明*()   

  1. 西南大学水稻研究所 / 西南大学农业科学研究院 / 转基因植物与安全控制重庆市重点实验室, 重庆 400715
  • 收稿日期:2019-01-09 接受日期:2020-10-14 出版日期:2021-03-12 网络出版日期:2020-11-02
  • 通讯作者: 赵芳明
  • 作者简介:沈文强, E-mail: 412588538@qq.com|赵冰冰, E-mail: 977276044@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0100202)(2017YFD0100202);重庆市科委项目(cstc2016shms-ztzx0017);重庆市科委项目(CSTCCXLJRC201713);西南大学基本业务费专项创新团队项目资助(XDJK2017A004)

Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits

SHEN Wen-Qiang(), ZHAO Bing-Bing(), YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming*()   

  1. Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University / Transgenic Plants and Safety Control, Chongqing Key Laboratory, Chongqing 400715, China
  • Received:2019-01-09 Accepted:2020-10-14 Published:2021-03-12 Published online:2020-11-02
  • Contact: ZHAO Fang-Ming
  • Supported by:
    National Key Research and Development Program of China(2017YFD0100202);Project of Chongqing Science & Technology Commission Grants(cstc2016shms-ztzx0017);Project of Chongqing Science & Technology Commission Grants(CSTCCXLJRC201713);Southwest University Innovation Team Project(XDJK2017A004)

摘要:

粒型、株高及穗部组成性状与产量形成密切相关, 是水稻重要农艺性状, 但遗传基础复杂。染色体片段代换系是用于复杂性状遗传研究的良好材料。本研究鉴定了一个以日本晴为受体、西恢18为供体亲本的水稻优良染色体片段代换系Z746。Z746携带来自西恢18的7个代换片段, 平均代换长度为3.99 Mb, 其株高、粒长和穗部性状均与受体存在显著差异。进一步通过日本晴与Z746杂交构建的次级F2群体共检测到36个相关QTL, 分布于2号、3号、4号、6号和11号染色体。其中5个可能与已克隆基因等位, 如qPH3-1等, 8个可被多次检出, 表明这些是遗传稳定的主效QTL。Z746的粒长主要由4个QTL (qGL3、qGL4qGL2qGL6)控制, 其中qGL3qGL4对粒长变异的贡献率分别为60.28%和27.47%。株高由5个QTL控制, 穗长由4个QTL控制, 每穗粒数由2个QTL控制, 千粒重由2个QTL控制。然后以MAS在F3共选出8个单片段代换系, 并以此在F4进行了相关QTL验证, 共有24个QTL可被8个单片段代换系(SSSL)检出, 重复检出率为66.7%, 表明这些QTL遗传稳定。本研究为目的QTL的进一步遗传机制研究及分子设计育种奠定了良好基础。

关键词: 水稻, 染色体片段代换系, 粒长, 株高, 穗部组成, QTL定位

Abstract:

The important agronomic traits, such as grain type, plant height, and panicle composition, are closely related to rice yield, and their gene inheritance is complex. Chromosome segment substitution lines (CSSLs) are useful materials for studying these complex traits. An excellent CSSL, Z746, containing seven substitution segments and with an average substitution length of 3.99 Mb, was identified from Nipponbare as a recipient and ‘Xihui 18’ as a donor parent. There were significant differences in plant height, panicle composition and grain size between Z746 and Nipponbare. Furthermore, a total of 36 quantitative trait loci (QTL) were detected on chromosomes 2, 3, 4, 6, and 11 in the secondary F2 population constructed by hybridization between Nipponbare and Z746. Five of them may be alleles of the cloned genes, such as qPH3-1, and eight can be detected by multiple times, indicating that these were genetically stable major QTLs. The grain length in Z746 was mainly controlled by four QTLs (qGL3, qGL4, qGL2, and qGL6), and the phenotypic variation of qGL3 and qGL4 for grain length was 60.28% and 27.47%, respectively. Plant height was controlled by five QTLs, panicle length by four QTLs, grain number per panicle by two QTLs, and the 1000-grain weight by two QTLs. Eight single segment substitution lines (SSSLs) were developed in F3 population by molecular marker-assisted selection (MAS), and relevant QTLs verification was conducted in F4. Finally, 24 QTLs were detected by 8 SSSLs and the repeat detection rate was 66.7%, indicating that these QTLs were genetically stable. These results provide a good foundation for further research on genetic mechanisms of the target QTLs and molecular design breeding.

Key words: rice (Oryza sativa L.), chromosome segment substitution line, grain length, plant height, spike composition, QTL mapping

图1

水稻染色体片段代换系Z746的代换片段及所携带的QTL 每条染色体左侧为物理距离(Mb)和定位的QTL; 右侧为标记名称、代换区间(框内标记)和代换长度(黑箭头指向)。"

图2

成熟期日本晴和Z746的株型、穗型和籽粒 A: 日本晴和Z746的株型, 标尺为10 cm; B: 日本晴和Z746的穗型, 标尺为5 cm; C, D: 日本晴和Z746的籽粒, 标尺为5 mm; E, F: 日本晴和Z746的糙米, 标尺为5 mm。"

表1

日本晴和Z746 及F2 群体各性状统计参数"

性状
Trait
平均值±标准差(亲本)
Mean±SD (parents)
F2群体
F2 population
日本晴
Nipponbare
Z746 平均值±标准差
Mean±SD
范围
Range
偏度
Skewness
峰度
Kurtosis
株高Plant height (cm) 87.93±5.32 96.70±2.11** 89.61±8.43 78.00-124.00 2.16 5.33
有效穗数Panicle number per panicle 18.40±5.55 17.70±5.42 14.41±4.56 6.00-28.00 0.67 0.23
穗长Panicle length (cm) 19.68±0.88 20.64±0.62 19.38±1.70 15.86-29.25 1.93 6.44
一次枝梗数Number of primary branch 7.42±0.43 8.05±0.67* 8.36±1.49 6.67-14.47 2.75 7.62
二次枝梗数Number of secondary branch 14.62±1.67 22.99±2.42** 14.59±4.38 7.17-34.73 2.20 6.71
粒长Grain length (mm) 7.40±0.08 8.93±0.19** 7.71±0.57 7.03-9.42 1.16 0.19
粒宽Grain width (mm) 3.44±0.06 2.85±0.11** 3.26±0.56 2.63-3.48 10.85 132.05
长宽比Ratio of length to width 2.15±0.03 3.13±0.15** 2.40±0.34 2.11-3.53 0.56 4.21
结实率Seed-setting rate (%) 91.79±2.02 89.01±2.34* 87.00±11.02 30.00-96.05 -3.25 11.54
每穗总粒数Spikelets per panicle 97.70±23.84 122.66±10.99* 91.75±18.10 62.56-182.67 2.24 7.62
每穗实粒数Grains per panicle 89.68±22.56 109.23±10.58* 78.77±15.17 26.11-166.73 0.90 7.86
千粒重1000-grain weight (g) 25.41±0.91 26.09±0.71 25.34±1.58 18.33-30.10 0.04 2.15
单株产量Yield per plant (g) 38.44±10.23 44.42±15.42 28.87±11.46 9.91-64.25 0.89 0.36

表2

水稻重要农艺性状QTL"

性状
Trait
QTL 染色体
Chr.
连锁标记
Linked marker
估计效应
Additive
贡献率
Var. (%)
P
P-value
株高
Plant height (cm)
qPH2-1 2 RM1075 -5.06 15.06 < 0.0001
qPH2-2 2 RM6378 4.11 13.70 0.0037
qPH3-1 3 RM14389 3.17 2.71 0.0108
qPH3-2 3 RM6266 1.92 5.06 0.0258
qPH4 4 RM1155 4.71 16.67 < 0.0001
qPH6-1 6 RM7412 3.01 13.59 0.0009
qPH6-2 6 RM103 -4.13 26.98 0.0075
穗长
Panicle length (cm)
qPL2 2 RM1075 -0.99 13.12 < 0.0001
qPL3 3 RM6266 0.39 4.85 0.0346
qPL4 4 RM1155 0.49 4.16 0.0276
qPL6 6 RM7412 0.64 13.81 0.0011
一次枝梗数
Number of primary branch
qNPB2-1 2 RM1075 -0.49 4.19 0.0198
qNPB2-2 2 RM6378 0.70 11.59 0.0074
qNPB2-3 2 RM13262 -0.47 5.43 0.0449
qNPB3 3 RM14389 0.46 5.92 0.0424
qNPB4 4 RM1155 1.10 27.43 < 0.0001
qNPB6-1 6 RM7412 0.57 14.32 0.0007
qNPB6-2 6 RM103 -0.87 35.15 0.0023
qNPB6-3 6 RM494 0.63 18.95 0.0165
二次枝梗数
Number of secondary branch
qNSB2-1 2 RM1075 -1.42 3.35 0.0366
qNSB2-2 2 RM6378 1.76 7.10 0.0284
qNSB4 4 RM1155 2.01 8.73 0.0015
qNSB6 6 RM7412 1.80 13.81 0.0011
粒长
Grain
length (mm)
qGL2 2 RM1075 -0.11 3.63 0.0302
qGL3 3 RM6266 0.34 60.28 < 0.0001
qGL4 4 RM1155 0.26 27.47 < 0.0001
qGL6 6 RM7412 0.08 4.77 0.0467
长宽比
Ratio of length
to width
qRLW2 2 RM13262 0.16 12.97 0.0017
qRLW3 3 RM6266 0.13 14.23 0.0004
qRLW4 4 RM1155 0.15 10.41 0.0005
qRLW6 6 RM7412 0.08 5.30 0.0414
结实率
Seed-setting rate (%)
qSSR4 4 RM1155 -0.07 17.33 < 0.0001
每穗粒数
Spikelets per panicle
qSP4 4 RM1155 6.24 4.73 0.0122
qSP6 6 RM7412 4.33 4.51 0.0481
千粒重
1000-grain weight (g)
qGWT2 2 RM13262 -0.88 14.82 0.0009
qGWT3 3 RM6266 1.13 40.50 < 0.0001

表3

SSSL中QTL的加性效应分析"

SSSL代码
SSSL code
代换片段 b
Substitution segment b
长度
Length (Mb)
染色体
Chr.
性状
Trait
QTL 均值±标准差
Mean±SD
加性效应
Additive
P
P-value
N a 株高
Plant height (cm)
90.60±4.50
S1 RM2770--RM6378--RM1075 1.04 2 qPH2-1 101.06±1.65 5.23 2.86E-06
S2 RM6378--RM1075--RM5699 2.58 2 qPH2-2 128.12±3.46 18.76 2.58E-13
S3 RM132--RM14389--RM175 7.34 3 qPH3-1 101.15±1.54 5.28 2.31E-06
S4 RM5928--RM6266--RM157 1.43 3 qPH3-2 110.65±3.48 10.02 4.55E-08
S5 RM5688--RM1155--RM17078 2.95 4 qPH4 108.66±3.19 9.03 1.40E-08
S6 RM7412--RM103--RM494 0.90 6 qPH6-1 109.31±2.00 9.36 1.35E-09
S7 RM103--RM494--long arm end 0.20 6 qPH6-2 104.95±1.73 9.36 4.67E-08
S8 RM5371--RM7412-RM103-RM494--long arm end 2.57 6 qPH6 106.20±2.29 7.80 2.93E-08
N a 穗长
Panicle length (cm)
19.02±1.11
S1 RM2770--RM6378--RM1075 1.04 2 qPL2 22.70±1.29 1.84 8.53E-07
S4 RM5928--RM6266--RM157 1.43 3 qPL3 24.60±2.19 2.79 1.69E-05
S5 RM5688--RM1155--RM17078 2.95 4 qPL4 21.64±1.62 1.31 0.001
S7 RM103--RM494--long arm end 0.20 6 qPL6 26.02±1.92 3.50 4.63E-08
N a 一次枝梗数
Number of primary branch
9.47±0.55
S2 RM6378--RM1075--RM5699 2.58 2 qNPB2 12.80±1.60 1.67 1.57E-05
S8 RM5371--RM7412-RM103-RM494--long arm end 2.57 6 qNPB6 10.27±0.96 0.40 0.02
N a 二次枝梗数
Number of secondary branch
16.03±2.54
S1 RM2770--RM6378--RM1075 1.04 2 qNSB2-1 18.82±2.75 1.40 0.03
S2 RM6378--RM1075--RM5699 2.58 2 qNSB2-2 25.78±2.97 4.88 1.38E-06
N a 粒长
Grain length (mm)
7.25±0.13
S4 RM5928--RM6266--RM157 1.43 3 qGL3 7.71±0.23 0.23 0.0002
S7 RM103--RM494--long arm end 0.20 6 qGL 6 7.55±0.21 0.15 0.002
N a 长宽比
Ratio of length to width
2.17±0.04
S4 RM5928--RM6266--RM157 1.43 3 qRLW3 2.31±0.07 0.07 0.0003
S5 RM5688--RM1155--RM17078 2.95 4 qRLW4 2.33±0.11 0.08 0.0007
S7 RM103--RM494--long arm end 0.20 6 qRLW6 2.50±0.12 0.16 9.94E-07
N a 结实率
Seed-setting rate (%)
92.73±3.59
S5 RM5688--RM1155--RM119 2.95 4 qSSR4 81.24±4.32 -5.75 0.0002
N a 每穗总粒数
Spikelets per panicle
91.76±8.36
S5 RM5688--RM1155--RM17078 2.95 4 qSP4 104.00±9.37 6.12 0.006
S7 RM103--RM494--long arm end 0.20 6 qSP6 117.6±10.12 12.92 1.30E-05
N a 千粒重
1000-grain weight (g)
24.07±0.53
S4 RM5928--RM6266--RM157 1.43 3 qGWT3 27.56±0.47 1.75 7.11E-10
[1] 刘喜, 牟昌铃, 周春雷, 程治军, 江玲, 万建民. 水稻粒型基因克隆和调控机制研究进展. 中国水稻科学, 2018,32:1-11.
Liu X, Mou C L, Zhou C L, Cheng Z J, Jiang L, Wan J M. Research progress on cloning and regulation mechanism of rice grain shape genes. Chin J Rice Sci, 2018,32:1-11 (in Chinese with English abstract).
[2] 卢寰, 时振英. 水稻穗发育的分子生物学研究进展. 植物生理学报, 2013,49:111-121.
Lu H, Shi Z Y. Molecular research progress of rice panicle development. Acta Photophysiol Sin, 2013,49:111-121 (in Chinese with English abstract).
[3] Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584.
[4] Feng Z M, Wu C, Wang C, Roh J, Zhang L, Chen J, Zhang S, Zhang H, Yang C, Hu J, You X, Liu X, Yang X, Guo X, Zhang X, Wu F, Terzaghi W, Kim S K, Jiang L, Wan J M. SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. J Exp Bot, 2016,67:4241-4253.
[5] Jin J, Hua L, Zhu Z F, Tan L B, Zhao X H, Zhang W F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Sun C Q. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell, 2016,28:2453-2463.
pmid: 27634315
[6] Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc Natl Acad Sci USA, 2015,112:76-81.
pmid: 25535376
[7] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X. The novel quantitative trait locusGL3.1 controls rice grain size and yield by regulating Cyclin-T1; 3. Cell Res, 2012,22:1666-1680.
[8] Fan X, Jun F, Shu J O, Shao P G, Feng X Z, Lin D, Yun H X, Hong R W, Xiao H S, Jin F C, Guo D W, Cheng C C. Variations in CYP78A13 coding region influence grain size and yield in rice. Plant Cell Environ, 2015,38:800-811.
doi: 10.1111/pce.12452 pmid: 25255828
[9] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene,sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002,9:11-17.
[10] Tong H N, Xiao Y H, Liu D P, Gao S P, Liu L C, Yin Y H, Jin Y, Qian Q, Chu C C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell, 2014,26:4376-4393.
pmid: 25371548
[11] Wu J H, Zhu C F, Pang J H, Zhang X R, Yang C L, Xia G X, Tian Y C, He C Z. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. Plant J, 2014,80:1118-1130.
doi: 10.1111/tpj.12714 pmid: 25353370
[12] Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002,32:495-508.
pmid: 12445121
[13] Ito S, Kitahata N, Umehara M, Hanada A, Kato A, Ueno K, Mashiguchi K, Kyozuka J, Yoneyama K, Yamaguchi S, Asami T. A new lead chemical for strigolactone biosynthesis inhibitors. Plant Cell Physiol, 2010,51:1143-1150.
doi: 10.1093/pcp/pcq077 pmid: 20522488
[14] Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010,42:545-549.
pmid: 20495564
[15] Motoyuki A, Hitoshi S, Shao Y L, Toshio Y, Tomonori T, Asuka N, Enrique R A, Qian Q, Hidemi K, Makoto M. Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
[16] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at theDEP1 locus enhances grain yield in rice. Nat Genet, 2009,41:494-497.
[17] Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003,130:3841-3850.
doi: 10.1242/dev.00564 pmid: 12835399
[18] Li F, Liu W B, Tang J Y, Chen J F, Tong H N, Hu B, Li C L, Fang J, Chen M S, Chu C C. RiceDENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res, 2010,20:838-849.
pmid: 20502443
[19] 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华. 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016,38(11):1-7.
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H. Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer line. J Southwest Univ (Nat Sci Edn), 2016,38(11):1-7 (in Chinese with English abstract) .
[20] 周可, 李燕, 王世明, 崔国庆, 杨正林, 何光华, 凌英华, 赵芳明. 水稻紫鞘染色体片段代换系Z519的鉴定及PSH1候选基因分析. 作物学报, 2017,43:974-982.
Zhou K, Li Y, Wang S M, Cui G Q, Yang Z L, He G H, Ling Y H, Zhao F M. Identification of rice chromosome segment substitution line Z519 with purple sheath and candidate gene analysis of PSH1. Acta Agron Sin, 2017,43:974-982 (in Chinese with English abstract).
[21] Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991,127:181-197.
pmid: 1673106
[22] 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位. 作物学报, 2018,44:1477-1484.
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M. Identification of rice chromosome segment substitution line Z1377 with increased plant height and QTL mapping for agronomic important traits. Acta Agron Sin, 2018,44:1477-1484 (in Chinese with English abstract).
[23] Murray M, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980,8:4321-4326.
pmid: 7433111
[24] Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z. Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTL for agronomic traits from the F3 population. Cereal Res Commun, 2016,44:370-380.
[25] Zhao F M, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Detection of QTLs for important agronomic traits and analysis of their stabilities using SSSLs in rice. Agric Sci China, 2007, 6:769-778.
[26] Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor Appl Genet, 2006,132:1-25.
[27] 张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019,41:754-760.
Zhang G Q. The platform of breeding by design based on the SSSL library in rice. Hereditas (Beijing), 2019,41:754-760 (in Chinese with English abstract).
[28] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele ofOsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012,109:21534-21539.
[29] 王大川, 汪会, 马福盈, 杜婕, 张佳宇, 徐光益, 何光华, 李云峰, 凌英华, 赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位. 作物学报, 2020,46:140-146.
Wang D C, Wang H, Ma F Y, Du J, Zhang J Y, Xu G Y, He G H, Li Y F, Ling Y H, Zhao F M. Identification of rice chromosome segment substitution line Z747 with increased grain number and QTL mapping for related traits. Acta Agron Sin, 2020,46:140-146 (in Chinese with English abstract).
[30] Wang H, Zhang J Y, Naz F, Li J, Sun S F, He G H, Zhang T, Ling Y H, Zhao F M. Identification of rice QTLs for important agronomic traits with long kernel CSSL Z741 and three SSSLs. Rice Sci, 2020,27:414-422.
[31] Li Y Y, Shen A, Xiong W, Sun Q L, Luo Q, Song T, Li Z L, Luan W J. Overexpression ofOsHox32 results in pleiotropic effects on plant type architecture and leaf development in rice. Rice, 2016,9:1-15.
pmid: 26743769
[32] Zhang T, Wang S M, Sun S F, Zhang Y, Li J, You J, Su T, Chen W B, Ling Y H, He G H, Zhao F M. Analysis of QTL for grain size in a rice chromosome segment substitution line Z1392 with long grains and fine mapping of qGL-6. Rice, 2020,13:1-11.
[33] Zhang Y, Lan H X, Shao Q L, Wang R Q, Chen H, Tang H J, Zhang H S, Huang J. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). J Exp Bot, 2016,67:315-326.
doi: 10.1093/jxb/erv464 pmid: 26512055
[34] Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. A ctivation ofbig grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015,112:11102-11107.
pmid: 26283354
[35] Zhang J, Liu X Q, Li S Y, Cheng Z K, Li C Y. The rice semi-dwarf mutantsd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS One, 2014,9:e88068.
pmid: 24498428
[36] Chen Y N, Fan X R, Song W J, Zhang Y L, Xu G H. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012,10:139-149.
pmid: 21777365
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!