欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1189-1199.doi: 10.3724/SP.J.1006.2019.82058

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同氮水平下水稻钾吸收及全基因组关联分析

邹伟伟1,路雪丽2,王丽1,薛大伟3,曾大力2,*(),李志新1,*()   

  1. 1 长江大学农学院, 湖北荆州 434025
    2 中国水稻研究所, 浙江杭州 310006
    3 杭州师范大学生命科学学院, 浙江杭州311121
  • 收稿日期:2018-11-22 接受日期:2019-01-19 出版日期:2019-08-12 网络出版日期:2019-03-11
  • 通讯作者: 曾大力,李志新
  • 作者简介:E-mail: 1058510926@qq.com
  • 基金资助:
    本研究由主要粮食作物产业化湖北省协同创新中心资助(MS2015004)

Potassium uptake and genome-wide association analysis of rice under different nitrogen levels

ZOU Wei-Wei1,LU Xue-Li2,WANG Li1,XUE Da-Wei3,ZENG Da-Li2,*(),LI Zhi-Xin1,*()   

  1. 1 Agronomy Department, Yangtze University, Jingzhou 434025, Hubei, China
    2 China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
    3 School of Life Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
  • Received:2018-11-22 Accepted:2019-01-19 Published:2019-08-12 Published online:2019-03-11
  • Contact: Da-Li ZENG,Zhi-Xin LI
  • Supported by:
    The study was supported by the Hubei Collaborative Innovation Center for Industrialization of Major Grain Crops(MS2015004)

摘要:

以业已完成深度重测序的134份水稻地方种质资源为材料, 在大田栽培条件下按不施氮(N0), 施96 kg hm -2纯氮(N1)和施192 kg hm -2纯氮(N2) 3种氮肥水平, 检测了分蘖盛期植株的钾含量、植株干重和钾积累。结果表明, 水稻钾含量、植株干重和钾积累在N0、N1、N2三种氮肥处理下均呈正态分布, 表型变异丰富。植株干重和钾积累与施氮量呈极显著正相关, 钾含量与施氮量相关性不显著; 钾含量与植株干重呈负相关, 钾含量与钾积累相关性不显著, 而植株干重与钾积累呈极显著正相关。在3个施氮水平下, 籼稻的钾含量极显著低于粳稻, 籼稻的干重和钾积累都极显著高于粳稻。全基因组关联分析发现, 在3个氮肥水平下检测到12个显著相关位点, 其中钾积累、钾含量和植株干重的显著相关位点分别有2、5和5个。在N1水平下, 位于第6染色体上与钾含量相关的SNP (Chr6_1,524,776)的显著性峰候选区包含与钾离子转运蛋白互作的RUPO基因。根据钾含量的差异, 鉴定出3个钾含量与低氮响应有关的SNP位点, 1个位点与高氮响应有关, 而位于第10染色体上的显著性位点Chr10_2,822,026对低氮和高氮均有响应, 该区域的4个候选基因的表达在不同氮水平间存在差异。

关键词: 全基因组关联分析, 钾含量, 干重, 钾积累, 水稻

Abstract:

A total of 134 resequenced rice landraces were used for assessing the potassium content, plant dry weight and potassium accumulation at three different nitrogen levels including no nitrogen fertilizer (N0), 96 kg ha -1 (N1), and 192 kg ha -1 (N2) under normal field cultivation, respectively. All the three traits displayed normal distribution with abundant variations under N0, N1, and N2 nitrogen levels, respectively. K accumulation and plant dry weight showed positive correlation with nitrogen levels. Meanwhile, the negative correlation was detected between K content and dry weight, and there was positive correlation between dry weight and K accumulation. In addition, the K content showed significantly lower in indica than in japonica, while the dry weight and K accumulation in indica were significantly higher than those in japonica. A total of 12 SNPs presented significant association with the potassium content, plant dry weight and potassium accumulation under three diferent nitrogen levels, including two SNPs for K accumulation, five SNPs for K content and five SNPs for dry weight. A SNP (Chr6_1,524,776) associated with potassium content on chromosome 6 was detected at N1 level. Its flank contained a receptor-like kinase, RUPO, which interacts with potassium transporters in rice. According to the difference of potassium content, one SNP and three SNPs were identified with high nitrogen and low nitrogen response, respectively. While four candidate genes closed to the SNP (Chr10_2,822,026) were associated to K content relatively changed under both high nitrogen and low nitrogen levels, showing different expression levels under different nitrogen levels.

Key words: genome-wide association study, potassium content, dry weight, potassium accumulation, Oryza sativa

表1

RT-PCR引物"

候选基因
Candidate gene
上游引物序列
Forward primer sequences (5°-3°)
下游引物序列
Reverse primer sequences (5'-3')
LOC_Os10g05730 GGCATCAAAACAGGCTCACA GGCCAACTTTACAGGTACACA
LOC_Os10g05600 GCTGTTCTTGGTCCACGC GGCCTTACTGAGTCTCTCCC
LOC_Os10g05540 CTCGGCTTCTTCCACAACTC CCTGGATCTGGCTGGAGAC
LOC_Og05620 CACGAGCACCCACAATGTAG AACGGTCACCCCTTCATCTT

表2

3个氮水平下钾含量、干重和钾积累变化"

性状
Trait
参数
Parameter
氮水平 N level
N0 N1 N2
K含量K content (mg g-1) 均值Mean 28.87±2.85 28.05±3.35 28.05±3.20
变幅Range 22.21-35.12 20.02-37.03 19.23-38.92
干重Dry weight (g plant-1) 均值Mean 4.68±1.29 6.30±1.69 7.70±2.02
变幅Range 1.94-8.12 2.66-10.30 3.68-14.40
钾积累K accumulation (mg plant-1) 均值Mean 26.47±7.07 34.91±8.76 42.51±10.89
变幅Range 11.41-48.26 15.58-53.72 21.71-72.93

图1

3 种氮水平下水稻钾含量、干重和钾积累的分布 a、c和e分别为N0、N1和N2条件下的钾含量、干重和钾积累分布; b、d、f 为N0、N1和N2条件下钾含量、干重和钾积累分布的气泡图, 气泡宽度代表株系数, 红色虚线为3 种氮条件下各性状的平均值。"

图2

不同氮处理下钾含量和钾积累相对变化的分布 a和b是分别相对N0N1-N0和N2N2-N1钾含量和钾积累相对变化分布。KC: 钾含量; KA: 钾积累。"

图3

钾含量、干重和钾积累在3种氮水平处理下籼粳亚种间的比较 a、b、c是钾含量、干重和钾积累在3种氮水平处理下籼粳亚种间的比较。C0i、C1i、C2i分别表示籼稻在N0、N1、N2下的钾含量, C0j、C1j、C2j分别表示梗稻在N0、N1、N2下的钾含量; W0i、W1i、W2i分别表示籼稻在N0、N1、N2下的植株干重, W0j、W1j、W2j分别表示粳稻在N0、N1、N2下的植株干重; A0i、A1i、A2i分别表示籼稻在N0、N1、N2下的钾积累, A0j、A1j、A2j分别表示粳稻在N0、N1、N2下的钾积累。"

表3

参试水稻材料钾含量、干重和钾积累与氮水平的相关系数"

氮水平
N level
钾含量
K content
干重
Dry weight
钾积累
K accumulation
N0 N1 N0 N1 N0 N1
N1 -0.11 0.48** 0.46**
N2 -0.14 -0.02 0.67** 0.35** 0.66** 0.37**

表4

3个氮水平下参试水稻材料3个目标性状间的相关系数"

性状
Trait
N0 N1 N2
K含量
K content
干重
Dry weight
K含量
K content
干重
Dry weight
K含量
K content
干重
Dry weight
干重Dry weight -0.33** -0.38** -0.30**
K积累 K accumulation 0.06 0.92** 0.09 0.88** 0.16 0.89**

表5

3种氮处理下钾含量、干重和钾积累的显著性关联位点"

性状
Trait
氮水平
Nitrogen level
染色体
Chr.
物理距离
Position (bp)
主要等位基因
Major allele
次要等位基因
Minor allele
最小等位基因频率
Minor allele frequency
P-value
(-lg P)
钾积累 N0 6 21,362,789 G A 0.087 6.803
K accumulation N1 6 21,336,732 A G 0.387 6.130
钾含量 N1 1 2,908,421 A G 0.302 6.313
K content N1 2 7,907,735 A C 0.477 6.900
N1 3 5,568,543 A G 0.317 6.791
N1 6 1,524,776 G A 0.228 7.643
N1 6 26,011,593 C T 0.077 6.400
植株干重 N0 6 21,337,192 T C 0.380 6.265
Plant weight N1 6 21,337,192 T C 0.378 7.303
N1 6 23,166,060 C T 0.049 6.267
N1 10 19,108,030 C A 0.105 6.248
N2 10 19,108,030 C A 0.105 6.282

图4

3个氮水平下水稻钾含量、干重和钾积累的全基因组关联分析 a、b和c分别是3个氮水平下水稻钾含量、干重和钾积累的全基因组关联分析。"

表6

钾含量在N0和N2处理下的相对变化的显著关联位点"

性状
Trait
染色体
Chr.
物理距离
Position (bp)
主要等位基因
Major allele
次要等位基因
Minor allele
最小等位基因频率
Minor allele frequency
P-value
(-lg P)
KCN1-N0 9 6,934,774 T A 0.149 6.672
KCN1-N0 10 2,822,026 C T 0.066 6.296
KCN1-N0 10 4,669,497 G A 0.030 6.201
KCN2-N1 10 2,822,026 C T 0.066 6.938

图5

钾含量和钾积累在N0和N2相对变化的全基因组关联分析 a和b分别为钾含量和钾积累在N0和N2相对变化的全基因组关联分析。KC: 钾含量; KA: 钾积累。"

图6

在3个氮水平下4个候选基因相对表达水平 在3个氮水平中, 雷达图以N1水平基因的表达量为1。"

[1] 燕金香, 李福明, 徐春梅, 陈松, 褚光, 章秀福, 王丹英 . 水稻氮钾吸收的交互作用研究. 中国稻米, 2017,23(2):1-4.
Yan J X, Li F M, Xu C M, Chen S, Chu G, Zhang X F, Wang D Y . Study on interactions between N and K absorption in rice. China Rice, 2017,23(2):1-4 (in Chinese with English abstract).
[2] 侯云鹏, 韩立国, 孔丽丽, 尹彩霞, 秦裕波, 李前, 谢佳贵 . 不同施氮水平下水稻的养分吸收、转运及土壤氮素平衡. 植物营养与肥料学报, 2015,21:836-845.
Hou Y P, Han L G, Kong L L, Yin C X, Qin Y B, Li Q, Xie J G . Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses. Plant Nutr Fert Sci, 2015,21:836-845 (in Chinese with English abstract).
[3] 潘圣刚, 闻祥成, 莫钊文, 段美洋, 董浩然, 黄贵兴, 田华, 唐湘如 . 施氮量和遮荫对不同基因型水稻产量及一些生理特性的影响. 中国水稻科学, 2015,29:141-149.
Pan S G, Wen X C, Mo Z W, Duan M Y, Dong H R, Huang G X, Tian H, Tang X R . Effects of nitrogen application and shading on yields and some physiological characteristics in different rice genotypes. Chin J Rice Sci, 2015,29:141-149 (in Chinese with English abstract).
[4] Rutkowska A, Pikuła D, Stepien W . Nitrogen use efficiency of maize and spring barley under potassium fertilization in long- term field experiment. Plant Soil Environ, 2014,60:550-554.
doi: 10.17221/PSE
[5] 王毅, 武维华 . 植物钾营养高效分子遗传机制. 植物学报, 2009,44:27-36.
Wang Y, Wu W H . Molecular genetic mechanism of high efficient potassium uptake in plants. Chin Bull Bot, 2009,44:27-36 (in Chinese with English abstract).
[6] 孙爱文, 张卫峰, 杜芬, 高利伟, 张福锁, 陈新平 . 中国钾资源及钾肥发展战略. 现代化工, 2009,29(9):10-14.
Sun A W, Zhang W F, Du F, Gao L W, Zhang F S, Chen X P . China's development strategy on potash resources and fertilizer. Modern Chem Ind, 2009,29(9):10-14 (in Chinese with English abstract).
[7] 梁健, 任红茹, 夏敏, 李晓峰, 陈梦云, 李军, 张洪程, 霍中洋 . 淮北地区氮肥群体最高生产力水稻钾素吸收利用特征. 作物学报, 2017,43:558-570.
Liang J, Ren H R, Xia M, Li X F, Chen M Y, Li J, Zhang H C, Huo Z Y . Potassium absorption and utilization characteristics of rice varieties with the highest population productivity under corresponding nitrogen fertilization in Huaibei area. Acta Agron Sin, 2017,43:558-570 (in Chinese with English abstract).
[8] 曾文龙 . 土壤对铵、钾及磷酸离子吸附固定的研究. 中国烟草科学, 2001,22(1):28-32.
Zeng W L . Research of soil adsorption and fixation to ammonium, potassium and phosphorate ion. China Tob Sci, 2001,22(1):28-32 (in Chinese with English abstract).
[9] Szczerba M W, Britto D T, Kronzucker H J . K+ transport in plants: physiology and molecular biology . J Plant Physiol, 2009,166:447-466.
doi: 10.1016/j.jplph.2008.12.009
[10] Spalding E P, Hirsch R E, Lewis D R, Qi Z, Sussman M R, Lewis B D . Potassium uptake supporting plant growth in the absence of AKT1 channel activity. J Gen Physiol, 1999,113:909-918.
[11] Véry A A, Sentenac H . Molecular mechanisms and regulation of K+ transport in higher plants . Annu Rev Plant Biol, 2003,54:575-603.
doi: 10.1146/annurev.arplant.54.031902.134831
[12] Davenport R J, Tester M . A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol, 2000,122:823-834.
doi: 10.1104/pp.122.3.823
[13] Macleod L B . Effects of N, P, and K and their interactions on the yield and kernel weight of barley in hydroponic culture. Agron J, 1969,61:26-29.
doi: 10.2134/agronj1969.00021962006100010009x
[14] 胡泓, 王光火 . 施钾条件下杂交水稻氮磷养分吸收利用特点. 土壤通报, 2003,34:202-204.
Hu H, Wang G H . Natune of nitrogen and phosphorus uptake by a hybrid rice under the potassium fertilizer treatment. Chin J Soil Sci, 2003,34:202-204.
[15] Schachtman D P, Schroeder J I . Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994,370:655-658.
[16] Ko C H, Buckley A M, Gaber R F . TRK2 is required for low affinity K+ transport in saccharomyces cerevisiae. Genetics, 1990,125:305-312.
[17] 寥红, 严小龙 . 高级植物营养学. 北京: 科学出版社, 2003.pp 242-250.
Liao Ho, Yano X L . Advanced Plant Nutrition. Beijing: Science Press, 2003. pp 242-250(in Chinese).
[18] Amrutha R N, Sekhar P N, Varshney R K, Kishor P B K . Genome-wide analysis and identification of genes related to potassium transporter families in rice ( Oryza sativa L.). Plant Sci, 2007,172:708-721.
[19] Yang W, Kong Z, Omoikerodah E, Xu W, Li Q, Xue Y . Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice(Oryza sativa L.). J Genet Genomics, 2008,35:531-543.
[20] Yu Z, Hu Y F, Dai M Q, Huang L M, Zhou D X . The WUSCHEL-related Homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell, 2009,21:736-748.
[21] Chen G, Feng H, Hu Q, Qu H, Chen A, Yu L, Xu G . Improving rice tolerance to potassium deficiency by enhancing OsHAK16p: WOX11-controlled root development. Plant Biotechnol J, 2015,13:833-848.
[22] Zhao Y, Cheng S, Song Y, Huang Y, Zhou S L, Liu X Y, Zhou D X . The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling. Plant Cell, 2015,27:2469-2483.
[23] Wu P, Ni J J, Luo A C . QTLs underlying rice tolerance to low-potassium stress in rice seedlings. Crop Sci, 1998,38:1458-1462.
doi: 10.2135/cropsci1998.0011183X003800060009x
[24] Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y . QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance . Theor Appl Genet, 2004,108:253-260.
[25] Shimizu A, Guerta C Q, Gregorio G B, Kawasaki S, Ikehashi H . QTLs for nutritional contents of rice seedlings (Oryza sativa L.) in solution cultures and its implication to tolerance to iron-toxicity. Plant Soil, 2005,275:57-66.
[26] Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam R K, Singh R, Sharma P C, Singh A K, Gaikwad K, Sharma T R, Mohapatra T, Singh N K . Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics, 2010,284:121-136.
[27] Atwell S, Huang Y S, Vilhjálmsson B J, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, Meaux J, Ecker J R, Faure N, Kniskern J M, Jones J D, Michael T, Nemri A, Roux F, Salt D E, Tang C, Todesco M, Traw M B, Weigel D, Marjoram P, Borevitz J O, Bergelson J, Nordborg M . Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010,465:627-631.
[28] Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R . Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2011,2:467.
[29] Wen W, Li D, Li X, Xiang L, Gao Y Q, Li W Q, Li H H, Liu J, Liu H J, Chen W, Luo J, Yan J B . Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Sci Found China, 2015,5:32-32.
[30] Zhou Z, Jiang Y, Wang Z, Gou Z, Lu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee S H, Wang W, Tian Z . Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015,33:408-414.
[31] Kumar V, Singh A, Mithra S V A, Krishnamurthy S L, Parida S K, Jain S, Tiwari K K, Kumar P, Rao A R, Sharma S K, Khurana J, Singh N K, Mohapatra T . Genome-wide association mapping of salinity tolerance in rice (Oryza sativa L.). DNA Res, 2015,22:133-145.
[32] Wang C, Yang Y, Yuan X, Xu Q, Feng Y, Yu H Y, Wang Y P, Wei X H . Genome-wide association study of blast resistance in indica rice. BMC Plant Biol, 2014,14:1-11.
[33] Dan Z, Kang H, Li Z, Liu M H, Zhu X L, Wang Y, Wang D, Wang Z L, Liu W D, Wang G L . A genome-wide association study of field resistance to Magnaporthe oryzae in rice. Rice, 2016,9:44.
[34] 高易宏, 燕金香, 涂政军, 冷语佳, 陈龙, 黄李超, 代丽萍, 张光恒, 朱丽, 胡江, 任德勇, 郭龙彪, 钱前, 王丹英, 曾大力 . 不同氮处理下水稻剑叶叶宽的全基因组关联分析. 中国农业科学, 2017,50:2635-2646.
Gao Y H, Yan J X, Tu Z J, Leng Y J, Chen L, Huang L C, Dai L P, Zhang G H, Zhu L, Hu J, Ren D Y, Guo L B, Qian Q, Wang D Y, Zeng D L . Genome-wide association analysis on flag leaf width under different nitrogen levels in rice. Sci Agric Sin, 2017,50:2635-2646 (in Chinese with English abstract).
[35] Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325.
doi: 10.1093/nar/8.19.4321
[36] Dudbridge F, Gusnanto A . Estimation of significance thresholds for genomewide association scans. Genet Epidemiol, 2008,32:227-234.
doi: 10.1002/(ISSN)1098-2272
[37] Liu L, Zheng C, Kuang B, Wei L, Yan L, Wang T . Receptor-like kinase RUPO interacts with potassium transporters to regulate pollen tube growth and integrity in rice. PLoS Genet, 2016,12:e1006085.
[38] 刘国栋, 刘更另 . 籼稻耐低钾基因型的筛选. 作物学报, 2002,28:161-166.
Liu G D, Liu G L . Screening indica rice for K-efficient genotypes. Acta Agron Sin, 2002,28:161-166 (in Chinese with English abstract).
[39] 李华, 杨肖娥, 罗安程 . 不同氮钾条件下水稻基因型氮、钾积累利用差异. 中国水稻科学, 2002,16:86-88.
Li H, Yang X E, Luo A C . Genotypic difference in N and K accumulation under different N sources and K levels in rice (Oryza sativa L.). Chin J Rice Sci, 2002,16:86-88 (in Chinese with English abstract).
[40] Kitomi Y, Ito H, Hobo T, Aya K, Kitano H, Inukai Y . The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Plant J, 2011,67:472-484.
[41] Xu J C, Li J Z, Zheng X W, Zou L X, Zhu L H . QTL mapping of the root traits in rice seedling. J Genet Genomics, 2001,28:433-438.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!