欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1200-1207.doi: 10.3724/SP.J.1006.2019.84173

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生籽仁大小相关性状QTL定位

曾新颖1,2,郭建斌2,赵姣姣2,陈伟刚2,邱西克2,黄莉2,罗怀勇2,周晓静2,姜慧芳2,*(),黄家权1,*()   

  1. 1 海南大学热带农林学院/海南省热带资源可持续利用重点实验室, 海南海口 571003
    2 中国农业科学院油料作物研究所/农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2018-12-18 接受日期:2019-04-15 出版日期:2019-08-12 网络出版日期:2019-07-16
  • 通讯作者: 姜慧芳,黄家权
  • 作者简介:曾新颖, E-mail: 15799032956@163.com|郭建斌, E-mail: guojianbin1990@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31461143022);本研究由国家自然科学基金项目(31761143005);本研究由国家自然科学基金项目(31571713);本研究由国家自然科学基金项目(31801403);本研究由国家自然科学基金项目(31871666);农业部农作物种质资源保护项目(2017NWB033);国家农作物种质资源共享服务平台(NICGR2017-36);国家现代农业产业技术体系建设专项资助(CARS-13-种质资源评价)

Identification of QTL related to seed size in peanut (Arachis hypogaea L.)

ZENG Xin-Ying1,2,GUO Jian-Bin2,ZHAO Jiao-Jiao2,CHEN Wei-Gang2,QIU Xi-Ke2,HUANG Li2,LUO Huai-Yong2,ZHOU Xiao-Jing2,JIANG Hui-Fang2,*(),HUANG Jia-Quan1,*()   

  1. 1 Institute of Tropical Agriculture and Forestry, Hainan University/Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Haikou 571003, Hainan, China
    2 Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2018-12-18 Accepted:2019-04-15 Published:2019-08-12 Published online:2019-07-16
  • Contact: Hui-Fang JIANG,Jia-Quan HUANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31461143022);This study was supported by the National Natural Science Foundation of China(31761143005);This study was supported by the National Natural Science Foundation of China(31571713);This study was supported by the National Natural Science Foundation of China(31801403);This study was supported by the National Natural Science Foundation of China(31871666);the Crop Germplasm Resources Protection Project(2017NWB033);the Plant Germplasm Resources Sharing Platform(NICGR2017-36);the China Agriculture Research System(CARS-13-种质资源评价)

摘要:

花生籽仁大小相关性状是决定花生产量的直接因素。为发掘与花生籽仁大小相关的QTL, 本研究以中花16 ×J11构建的RIL群体为材料, 得到了一张包含289个SSR标记、21个连锁群、覆盖长度为947.3 cM的遗传连锁图谱。连续2年对籽仁大小相关性状鉴定表明, 各性状在群体中变异广泛, 呈典型正态分布, 且大部分性状间显著相关。结合本研究构建的遗传图谱, 利用WinCart2.5进行QTL定位分析, 2年共检测到66个QTL, 贡献率为3.23%~33.01%。与籽仁长(SL)、籽仁宽(SW)、籽仁长宽比(LWR)和百仁重(HSW)相关的QTL分别有18、16、18和14个。在这些QTL中, A05染色体上的区间A05A1500-A05A1530同时存在控制籽仁长(qSLA05.1qSLA05.2)和百仁重的相关的QTL (qHSWA05.1); B06染色体上的区间A06B135-A06B113同时存在控制籽仁宽(qSWB06.2qSWB06.4)和百仁重相关的QTL (qHSWB06.4), 这些稳定存在的主效QTL将为花生产量相关性状的精细定位和分子育种奠定基础。

关键词: 花生, 遗传图谱, 籽仁大小, QTL

Abstract:

Seed size-related traits are the direct factors determining the yield of peanut. To identify the QTL related to seed size-related traits, a recombinant inbred lines (RIL) population (188 progenies) derived from Zhonghua 16 × J11 was used in this study. A genetic linkage map of 947.3 cM in length was constructed, containing 21 linkage groups and 289 SSR markers. Seed size-related traits showed extensive variations in two years’ phenotyping. Between most of the traits with significant correlation. Based on the genetic map, we detected 66 QTL with the explained phenotypic variance (PVE) of 3.23%-33.01% were detected using the WinCart 2.5 software. The number of QTL for seed length (SL), seed width (SW), ratio of seed length to width (LWR) and hundred seed weight (HSW) were 18, 16, 18, and 14, respectively. Notably, the A05A1500-A05A1530 interval on Chromosome A05 harbored three QTL, i.e. qSLA05.1 and qSLA05.2 for SL and qHSWA05.1 for HSW, and the A06B135-A06B113 interval on B06 harbored three QTL as well, i.e. qSWB06.2 and qSWB06.4 for SW and qHSWB06.4 for HSW. These stable and major QTL pave a way for fine mapping of peanut yield-related traits and molecular breeding.

Key words: peanut, genetic mapping, seed size, QTL

表1

亲本及RIL群体籽仁相关表型性状统计分析"

年份 Year 性状
Trait
亲本Parent RIL群体 RIL population
P1 P2 最大值 Max 最小值 Min 平均值 Mean 标准差 SD 变异系数 CV (%) 峰度 Kurtosis 偏度 Skewness
2017 籽仁长 Seed length (mm) 16.85 11.45 18.48 10.84 14.20 1.52 10.73 0.10 0.33
籽仁宽 Seed width (mm) 10.64 8.50 11.80 8.39 9.85 0.62 6.34 -0.24 0.13
百仁重 Hundred seed weight (g) 79.27 32.49 88.49 34.84 59.04 10.39 17.59 0.17 0.28
籽仁长/宽 LWR 1.58 1.35 1.96 1.16 1.45 0.14 9.80 0.31 0.42
2018 籽仁长 Seed length (mm) 17.35 11.08 18.75 10.43 14.59 1.56 10.66 -0.41 0.20
籽仁宽 Seed width (mm) 11.84 8.00 11.35 8.22 9.85 0.59 6.03 -0.23 0.01
百仁重 Hundred seed weight (g) 97.78 33.67 88.24 34.51 62.84 10.49 17.25 -0.04 0.42
籽仁长/宽 LWR 1.48 1.39 1.87 1.14 1.50 0.14 9.63 -0.45 0.11

图1

籽仁长、籽仁宽、百仁重以及籽仁长宽比4个性状在2017和2018两年环境下的频率分布"

图2

籽仁大小性状的相关性分析热图 LWR: 籽仁长宽比; SW: 籽仁宽; SL: 籽仁长; HSW: 百仁重。"

表2

花生籽仁大小相关性状的方差分析"

性状
Trait
变异项
Variable
自由度
df
平方和
SS
均方
MS
F
F-value
P
P-value
籽仁长 SL 环境 Environment 1 12.663 12.663 24.956 <0.001
基因型 Genotype 187 788.117 4.215 8.306 <0.001
籽仁宽SW 环境 Environment 1 0.00902 0.00902 0.0564 0.813
基因型 Genotype 187 108.58 0.581 3.627 <0.001
百仁重HSW 环境 Environment 1 1262.256 1262.256 36.178 <0.001
基因型 Genotype 187 35,453.375 189.59 5.434 <0.001
籽仁长宽比LWR 环境 Environment 1 0.164 0.164 35.522 <0.001
基因型 Genotype 187 6.787 0.0363 7.874 <0.001

图3

花生遗传连锁图谱"

表3

SSR标记在遗传图谱上的分布情况 "

染色体
Chromosome
长度
Distance
标记数量
Number of markers
标记密度
Marker
density
A01 25.95 5 5.19
A02 28.21 11 2.56
A03 46.69 8 5.84
A04a 4.91 4 1.23
A04b 34.12 3 11.37
A05 49.10 13 3.78
A06 64.61 4 16.15
A07 50.62 7 7.23
A08 48.31 5 9.66
A09 79.29 10 7.93
A10 53.13 33 1.61
B01 34.23 12 2.85
B02 42.82 25 1.71
B03 79.83 13 6.14
B04 55.15 13 4.24
B05 36.07 16 2.25
B06 84.17 38 2.21
B07 36.75 29 1.27
B08 29.24 16 1.83
B09 17.12 12 1.43
B10 46.99 12 3.92
合计 Total 947.30 289 3.28

表4

不同环境下重复检测到的QTL "

染色体
Chromosome
年份与性状
Year and trait
QTL名称
QTL name
标记区间
Markers interval
LOD值
LOD value
贡献率
PVE (%)
加性效应值
Additive effect
A05 2017 SL qSLA05.2 A05A1500-A05A1530 18.20 33.01 0.8823
2018 SL qSLA05.5 (44.83-46.83 cM) 21.92 32.66 0.8944
2017 HSW qHSWA05.1 11.61 19.67 4.6552
2018 HSW qHSWA05.2 A05A1053-A05A1150 12.55 18.99 4.8211
2017 LWR qLWRA05.1 (32.47-36.25 cM) 7.07 11.03 0.0488
2018 LWR qLWRA05.3 8.42 12.28 0.0516
B06 2017 SL qSLB06.1 A06B467-A06B552 2.72 3.60 0.2951
2018 SL qSLB06.3 (66.2-72.09 cM) 3.87 3.95 0.3124
2017 SW qSWB06.2 A06B135-A06B113 8.53 14.27 0.2376
2018 SW qSWB06.4 (40.82-42.95 cM) 7.64 12.23 0.2273
2018 HSW qHSWB06.4 5.56 7.12 3.1744

图4

A05和B06上QTL共定位区间"

[1] Gomes R L F, Lopes  C A . Correlations and path analysis in peanut. Crop Breed Appl Biotechnol, 2005,5:105-112.
doi: 10.12702/1984-7033
[2] Selvaraj M G, Narayana M, Schubert A M, Ayers J L, Baring M R, Burow M D . Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol, 2009,12:13.
[3] Getahun A, Yang X L, He M J, Cui S L, Mu G J, Liu L F . Advances of genetic map construction and QTL mapping in peanut. J Peanut Sci, 2017,46:1-10.
[4] Wilson J N, Chopra R, Baring M R, Selvaraj M G, Simpson C E, Chagoya J, Burow M D . Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut ( Arachis hypogaea L.). Tropical Plant Biol, 2017,10:1-17.
[5] Wang M L, Khera P, Pandey M K, Wang H, Qiao L X, Feng S P, Tonnis B, Barkley N A, Pinnow D, Holbrook C C, Culbreath A K, Varshney R K, Guo B Z . Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS One, 2015,10:e0119454.
[6] Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K . A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010,121:971-984.
[7] Pandey M K, Wang H, Khera P, Vishwakarma M K, Kale S M, Culbreath A K, Holbrook C C, Wang X J, Varshney R K, Guo B Z . Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front Plant Sci, 2017,8:25.
[8] Luo H Y, Xu Z J, Li Z D, Li X P, Lv J W, Ren X P, Huang L, Zhou X J, Chen Y N, Yu J Y, Chen W G, Lei Y, Liao B S, Jiang H F . Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2017,130:1635-1648.
[9] Chen Y N, Ren X P, Zheng Y L, Zhou X J, Huang L, Yan L Y, Jiao Y Q, Chen W G, Huang S M, Wan L Y, Lei Y, Liao B S, Huai D X, Wei W H, Jiang H F . Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Mol Breed, 2017,37:17.
[10] Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012,12:80.
[11] Ravi K, Vadez V, Isobe S, Mir R R, Guo Y, Nigam S N, Gowda M V C, Radhakrishnan T, Bertioli D J, Knapp S J, Varshney R K . Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2011,122:1119-1132.
[12] 王传堂, 黄粤, 杨新道, 姜勇, 张建成, 陈殿绪, 闵平, 禹山林 . 改良CTAB法和高盐低pH值法提取花生DNA的效果. 花生学报, 2002,31:20-23.
Wang C T, Huang Y, Yang X D, Jiang Y, Zhang J C, Chen D X, Min P, Yu S L . Isolation of DNA from peanut: comparison between modified CTAB and high salt, low pH methods. Peanut Sci, 2002,31:20-23 (in Chinese with English abstract).
[13] Chen W G, Jiao Y Q, Cheng L Q, Huang L, Liao B S, Tang M, Ren X P, Zhou X J, Chen Y N, Jiang H F . Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet, 2016,17:25.
[14] Luo H Y, Ren X P, Li Z D, Xu Z J, Li X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Liao B S, Pandey M K, Varshney R K, Guo B Z, Jiang X G, Liu F, Jiang H F . Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017,18:58.
[15] Luo H Y, Guo J B, Ren X P, Chen W G, Huang L, Zhou X J, Chen Y N, Liu N, Xiong F, Lei Y, Liao B S, Jiang H F . Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2017,131:267-282.
[16] 李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳 . 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015,41:1313-1323.
Li Z D, Li X P, Huang L, Ren X P, Chen Y L, Zhou X J, Liao B S, Jiang H F . Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015,41:1313-1323 (in Chinese with English abstract).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[6] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[12] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[13] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!