作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1200-1207.doi: 10.3724/SP.J.1006.2019.84173
曾新颖1,2,郭建斌2,赵姣姣2,陈伟刚2,邱西克2,黄莉2,罗怀勇2,周晓静2,姜慧芳2,*(),黄家权1,*()
ZENG Xin-Ying1,2,GUO Jian-Bin2,ZHAO Jiao-Jiao2,CHEN Wei-Gang2,QIU Xi-Ke2,HUANG Li2,LUO Huai-Yong2,ZHOU Xiao-Jing2,JIANG Hui-Fang2,*(),HUANG Jia-Quan1,*()
摘要:
花生籽仁大小相关性状是决定花生产量的直接因素。为发掘与花生籽仁大小相关的QTL, 本研究以中花16 ×J11构建的RIL群体为材料, 得到了一张包含289个SSR标记、21个连锁群、覆盖长度为947.3 cM的遗传连锁图谱。连续2年对籽仁大小相关性状鉴定表明, 各性状在群体中变异广泛, 呈典型正态分布, 且大部分性状间显著相关。结合本研究构建的遗传图谱, 利用WinCart2.5进行QTL定位分析, 2年共检测到66个QTL, 贡献率为3.23%~33.01%。与籽仁长(SL)、籽仁宽(SW)、籽仁长宽比(LWR)和百仁重(HSW)相关的QTL分别有18、16、18和14个。在这些QTL中, A05染色体上的区间A05A1500-A05A1530同时存在控制籽仁长(qSLA05.1和qSLA05.2)和百仁重的相关的QTL (qHSWA05.1); B06染色体上的区间A06B135-A06B113同时存在控制籽仁宽(qSWB06.2和qSWB06.4)和百仁重相关的QTL (qHSWB06.4), 这些稳定存在的主效QTL将为花生产量相关性状的精细定位和分子育种奠定基础。
[1] |
Gomes R L F, Lopes  C A . Correlations and path analysis in peanut. Crop Breed Appl Biotechnol, 2005,5:105-112.
doi: 10.12702/1984-7033 |
[2] | Selvaraj M G, Narayana M, Schubert A M, Ayers J L, Baring M R, Burow M D . Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol, 2009,12:13. |
[3] | Getahun A, Yang X L, He M J, Cui S L, Mu G J, Liu L F . Advances of genetic map construction and QTL mapping in peanut. J Peanut Sci, 2017,46:1-10. |
[4] | Wilson J N, Chopra R, Baring M R, Selvaraj M G, Simpson C E, Chagoya J, Burow M D . Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut ( Arachis hypogaea L.). Tropical Plant Biol, 2017,10:1-17. |
[5] | Wang M L, Khera P, Pandey M K, Wang H, Qiao L X, Feng S P, Tonnis B, Barkley N A, Pinnow D, Holbrook C C, Culbreath A K, Varshney R K, Guo B Z . Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS One, 2015,10:e0119454. |
[6] | Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K . A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010,121:971-984. |
[7] | Pandey M K, Wang H, Khera P, Vishwakarma M K, Kale S M, Culbreath A K, Holbrook C C, Wang X J, Varshney R K, Guo B Z . Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front Plant Sci, 2017,8:25. |
[8] | Luo H Y, Xu Z J, Li Z D, Li X P, Lv J W, Ren X P, Huang L, Zhou X J, Chen Y N, Yu J Y, Chen W G, Lei Y, Liao B S, Jiang H F . Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2017,130:1635-1648. |
[9] | Chen Y N, Ren X P, Zheng Y L, Zhou X J, Huang L, Yan L Y, Jiao Y Q, Chen W G, Huang S M, Wan L Y, Lei Y, Liao B S, Huai D X, Wei W H, Jiang H F . Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Mol Breed, 2017,37:17. |
[10] | Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012,12:80. |
[11] | Ravi K, Vadez V, Isobe S, Mir R R, Guo Y, Nigam S N, Gowda M V C, Radhakrishnan T, Bertioli D J, Knapp S J, Varshney R K . Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2011,122:1119-1132. |
[12] | 王传堂, 黄粤, 杨新道, 姜勇, 张建成, 陈殿绪, 闵平, 禹山林 . 改良CTAB法和高盐低pH值法提取花生DNA的效果. 花生学报, 2002,31:20-23. |
Wang C T, Huang Y, Yang X D, Jiang Y, Zhang J C, Chen D X, Min P, Yu S L . Isolation of DNA from peanut: comparison between modified CTAB and high salt, low pH methods. Peanut Sci, 2002,31:20-23 (in Chinese with English abstract). | |
[13] | Chen W G, Jiao Y Q, Cheng L Q, Huang L, Liao B S, Tang M, Ren X P, Zhou X J, Chen Y N, Jiang H F . Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet, 2016,17:25. |
[14] | Luo H Y, Ren X P, Li Z D, Xu Z J, Li X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Liao B S, Pandey M K, Varshney R K, Guo B Z, Jiang X G, Liu F, Jiang H F . Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017,18:58. |
[15] | Luo H Y, Guo J B, Ren X P, Chen W G, Huang L, Zhou X J, Chen Y N, Liu N, Xiong F, Lei Y, Liao B S, Jiang H F . Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2017,131:267-282. |
[16] | 李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳 . 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015,41:1313-1323. |
Li Z D, Li X P, Huang L, Ren X P, Chen Y L, Zhou X J, Liao B S, Jiang H F . Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015,41:1313-1323 (in Chinese with English abstract). |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[6] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[7] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[8] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[9] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[10] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[11] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[12] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[13] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[14] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[15] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
|