欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1768-1778.doi: 10.3724/SP.J.1006.2021.04170

• 研究论文 • 上一篇    下一篇

低温胁迫对普通和高油酸花生种子萌发的影响

薛晓梦1(), 吴洁1, 王欣1, 白冬梅2, 胡美玲1, 晏立英1, 陈玉宁1, 康彦平1, 王志慧1, 淮东欣1,*(), 雷永1, 廖伯寿1,*()   

  1. 1中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
    2山西省农业科学院经济作物研究所, 山西汾阳 032200
  • 收稿日期:2020-07-26 接受日期:2021-01-21 出版日期:2021-09-12 网络出版日期:2021-02-23
  • 通讯作者: 淮东欣,廖伯寿
  • 作者简介:E-mail: xiaomengxue1991@163.com
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000900);广东省重点领域研发计划项目(2020B020219003)

Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid

XUE Xiao-Meng1(), WU JIE1, WANG Xin1, BAI Dong-Mei2, HU Mei-Ling1, YAN Li-Ying1, CHEN Yu-Ning1, KANG Yan-Ping1, WANG Zhi-Hui1, HUAI Dong-Xin1,*(), LEI Yong1, LIAO Bo-Shou1,*()   

  1. 1Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs / Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
    2Industrial Crops Research Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, Shanxi, China
  • Received:2020-07-26 Accepted:2021-01-21 Published:2021-09-12 Published online:2021-02-23
  • Contact: HUAI Dong-Xin,LIAO Bo-Shou
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);Key Area Research and Development Program of Guangdong Province(2020B020219003)

摘要:

高油酸花生以其营养价值高和耐储藏等特点深受广大消费者和加工企业的喜爱。近年来, 随着高油酸花生品种在我国的推广应用, 高油酸花生在高海拔、高纬度地区的发芽期耐寒性成为关注热点。为探究花生种子的油酸含量与其萌发期耐寒性的相关性, 本研究调查6组不同遗传背景的花生品种及其高油酸回交后代品系(BC4F8)在低温条件下的发芽率和发芽指数发现, 在低温胁迫下花生的萌发期耐寒性与其油酸含量无显著相关性。在泉花551高油酸后代品系(Quanhua 551-HO)低温发芽率显著低于其普通油酸含量亲本(Quanhua 551-NO)的组合中, 追踪分析8种主要脂肪酸在低温胁迫萌发过程中含量的变化发现, 在低温胁迫下Quanhua 551-NO中油酸含量显著减少且亚油酸含量显著增加, 而Quanhua 551-HO中也表现出了油酸含量减少、亚油酸含量增加的趋势, 但是未达到显著水平。进而分析上述2种材料中低温胁迫下各脂肪酸脱氢酶(fatty acid desaturase 2, FAD2)基因的表达模式发现, Quanhua 551-NO中AhFAD2-1A/B受低温诱导显著上调表达, 而AhFAD2-4A/B显著下调表达; 在Quanhua 551-HO中AhFAD2-4A/B受低温诱导持续显著上调表达, 而AhFAD2-1A/B显著下调表达, 推测由于高油酸花生中AhFAD2-1A/B编码蛋白失活, AhFAD2-4A/B在低温诱导下高量表达, 部分弥补了AhFAD2-1A/B缺失的功能。综上所述, 花生种子中油酸含量并不是决定其萌发期耐寒性的关键因素。

关键词: 高油酸花生, 低温胁迫, 发芽率, 脂肪酸脱氢酶(FAD2)

Abstract:

High oleate (HO) peanut is highly popular for its improved nutrient value and strengthened storage stability among customers and peanut processing enterprises. In recent years, with the adoption of HO peanut in our country, the cold tolerance of peanut at germination stage in high altitude or high latitude area has become a major concern. To figure out the relationship between the seed oleic acid content and the cold tolerance at germination stage in peanut, the germination rate and germination index of seeds under cold stress were investigated among six peanut cultivars with normal content of oleic acid (NO) and their backcross-derived HO lines, respectively. The results showed that the oleic acid content was not significantly correlated with the cold tolerance at germination stage. The contents of eight main fatty acids under cold stress at germination stage were tracked in Quanhua 551 (Quanhua 551-NO) and its HO offspring line (Quanhua 551-HO), and the germination rate of Quanhua 551-HO was significantly lower than that of Quanhua 551-NO under cold stress. The oleic acid content of Quanhua 551-NO was significantly decreased while the linoleic acid content was significantly increased under cold stress. However, the contents of oleic acid and linoleic acid exhibited the same trend in Quanhua 551-HO, and there was no significant difference. The expression profiles offatty acid desaturase 2 (AhFAD2) genes in both Quanhua 551-NO and Quanhua 551-HO under cold stress revealed that the relative expression level of AhFAD2-1A/B was significantly up-regulated, while that of AhFAD2-4A/B was significantly down-regulated under cold stress in Quanhua 551-NO. Conversely, the relative expression level of AhFAD2-1A/B was significantly decreased, but the relative expression level of AhFAD2-4A/B was significantly increased under cold stress in Quanhua 551-HO. These results implied that the up-regulation of AhFAD2-4A/Bin HO peanut may partly compensate for lost function of AhFAD2-1A/Bin response to cold stress. In conclusion, the oleic acid content in seed was not the main factor to determinate the cold tolerance at germination stage.

Key words: high oleate peanut, cold stress, germination rate, fatty acid desaturase 2 (FAD2)

表1

供试材料及其油酸含量"

品种
Cultivar
油酸含量
Oleic acid content (%)
品种
Cultivars
油酸含量
Oleic acid content (%)
徐花13号
Xuhua 13
普通油酸NO 45.58 中花21
Zhonghua 21
普通油酸NO 38.40
高油酸HO 81.14 高油酸HO 80.83
徐花9号
Xuhua 9
普通油酸NO 49.73 泉花551
Quanhua 551
普通油酸NO 50.72
高油酸HO 81.60 高油酸HO 80.62
中花16
Zhonghua 16
普通油酸NO 50.56 漯花9号
Luohua 9
普通油酸NO 47.90
高油酸HO 80.70 高油酸HO 80.50

表2

Real time PCR引物及其碱基序列"

基因
Gene
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
AhFAD2-1A, AhFAD2-1B RTAhFAD2-1-F ATCTGCTATATCACATAGCAACTCT
RTAhFAD2-1-R ACTGTTGCCAATGCTCCTCT
AhFAD2-3A, AhFAD2-3B RTAhFAD2-3-F GGTCTTATCCGTCTTGTCATGG
RTAhFAD2-3-R AGATGAATCGTAATGTGGCAATG
AhFAD2-4A, AhFAD2-4B RTAhFAD2-4-F TCATTCTGCCGGGAAGAGG
RTAhFAD2-4-R ATGGCGACATAGGCGAAAAT
AhActin Actin-F TAAGAACAATGTTGCCATACAGA
Actin-R GTTGCCTTGGATTATGAGC

图1

低温胁迫对不同品种花生的高油酸和普通油酸种子发芽率影响 NO: 普通油酸花生; HO: 高油酸花生。*、**和***分别表示在0.05、0.01和0.001水平显著差异。"

图2

低温胁迫下不同品种花生高油酸和普通油酸种子的发芽指数 CK: 种子在25℃条件下萌发6 d; T: 种子第1~3天在15℃条件下萌发, 第4~6天在25℃条件下萌发; NO: 普通油酸花生; HO: 高油酸花生。经单因素方差分析差异达到显著水平, 标以不同小写字母的柱值表示经单因素方差分析和最小显著差异法(LSD)检验差异达到显著水平(P < 0.05)。 "

图3

泉花551高油酸花生和普通油酸花生在不同温度处理下的发芽情况 25-NO: 泉花551普通油酸花生在25℃条件下萌发6 d; 15-NO: 第1~3天泉花551普通油酸花生在15℃条件下萌发, 第4~6天在25℃条件下萌发; 25-HO: 泉花551高油酸花生在25℃条件下萌发6 d; 15-HO: 第1~3天泉花551高油酸花生在15℃条件下萌发, 第4~6天在25℃条件下萌发。"

图4

低温胁迫下Quanhua 551种子发芽过程中脂肪酸含量的变化情况 C16:0: 棕榈酸; C18:0: 硬脂酸; C18:1: 油酸; C18:2: 亚油酸; C20:0: 花生酸; C20:1: 花生烯酸; C22:0: 山嵛酸; C24:0: 木蜡酸。CK: 种子在25℃条件下萌发6 d; T: 种子第1~3天在15℃条件下萌发, 第4~6天在25℃条件下萌发; NO: 普通油酸花生; HO: 高油酸花生。*表示在0.05水平差异显著。"

图5

低温胁迫下各AhFAD2基因在泉花551高油酸花生和普通油酸花生中的表达模式 a: 在不同温度处理条件下, AhFAD2-1A/B在Quanhua 551-NO中的表达模式; b: 在不同温度处理条件下, AhFAD2-3A/B在Quanhua 551-NO中的表达模式; c: 在不同温度处理条件下, AhFAD2-4A/B在Quanhua 551-NO中的表达模式; d: 在不同温度处理条件下, AhFAD2-1A/B在Quanhua 551-HO花生中的表达模式; e: 在不同温度处理条件下, AhFAD2-3A/B在Quanhua 551-HO中的表达模式; f: 在不同温度处理条件下, AhFAD2-4A/B在Quanhua 551-HO中的表达模式。CK: 种子在25℃条件下萌发6 d; T: 种子第1~3 天在15℃条件下萌发, 第4~6天在25℃条件下萌发; NO: 普通油酸花生; HO: 高油酸花生。*、**和***分别表示在0.05、0.01和0.001水平显著差异。 "

[1] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42:1-6.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42:1-6 (in Chinese with English abstract).
[2] Barkley N A, Isleib T G, Wang M L, Pittman R N. Genotypic effect of ahFAD2 on fatty acid profiles in six segregating peanut ( Arachis hypogaeaL.) populations. BMC Genet, 2013, 14:62.
doi: 10.1186/1471-2156-14-62 pmid: 23866023
[3] 宋江春, 李拴柱, 王建玉, 张秀阁, 朱雪峰, 乔建礼, 向臻. 我国高油花生育种研究进展. 作物杂志, 2018, (3):25-31.
Song J C, Li S Z, Wang J Y, Zhang X G, Zhu X F, Qiao J L, Xiang Z. Advances in breeding of high oil peanut in China. Crops, 2018, (3):25-31 (in Chinese with English abstract).
[4] Moore K M, Knauft D A. The inheritance of high oleic acid in peanut. Heredity, 1989, 80:8-10.
[5] Nawade B, Mishra G P, Radhakrishnan T, Dodia S M, Ahmad S, Kumar A, Kundu R. High oleic peanut breeding: Achievements, perspectives, and prospects. Trends Food Sci Technol, 2018, 78:107-119.
doi: 10.1016/j.tifs.2018.05.022
[6] Sales-Campos H, Reis de Souza P, Crema-Peghini B, Santana da Silva J, Ribeiro-Cardoso C. An overview of the modulatory effects of oleic acid in health and disease. Min Rev Med Chem, 2013, 13:201-210.
[7] 颜启传. 种子学. 北京: 中国农业出版社, 2001. pp 91-102.
Yan Q C. Seed Science. Beijing: China Agriculture Press, 2001. pp 91-102(in Chinese).
[8] Bell M J, Gillespie T J, Roy R C, Michaels T E, Tollenaar M. Peanut leaf photosynthetic activity in cool field environments. Crop Sci, 1994, 34, 1023-1029.
doi: 10.2135/cropsci1994.0011183X003400040035x
[9] 王传堂, 张建成, 唐月异, 于树涛, 王强, 刘峰, 李秋. 中国高油酸花生育种现状与展望. 山东农业科学, 2018, 50(6):171-176.
Wang C T, Zhang J C, Tang Y Y, Yu S T, Wang Q, Liu F, Li Q. Current situation and future directions of high oleic peanut breeding in China. Shandong Agric Sci, 2018, 50(6):171-176 (in Chinese with English abstract).
[10] Wang C T, Tang Y Y, Wang X Z, Wu Q, Guan S Y, Yang W Q, Wang P W. Development and characterization of four new high oleate peanut lines. Res Crops, 2013, 14:845-849.
[11] 王传堂, 唐月异, 王秀贞, 吴琪, 王志伟, 宫清轩, 冯昊, 杜祖波, 李秋. 高油酸花生新品系丰产性与播种出苗期耐低温高湿田间评价. 山东农业科学, 2019, 51(9):110-114.
Wang C T, Tang Y Y, Wang X Z, Wu Q, Wang Z W, Gong Q X, Feng H, Du Z Q, Li Q. Evaluation on productivity of new high oleic peanut lines and field tolerance to low temperature and high moisture during sowing to emergence period. Shandong Agric Sci, 2019, 51(9):110-114 (in Chinese with English abstract).
[12] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿. 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018, 51:1641-1652.
Zhang Z H, Wang Z H, Huai D X, Tan J Z, Chen J H, Yan L Y, Wang X J, Wan L Y, Chen A, Kang Y P, Jiang H F, Lei Y, Liao B S. Fast development of high oleate peanut cultivars by using maker-assisted backcrossing and their evaluation. Sci Agric Sin, 2018, 51:1641-1652 (in Chinese with English abstract).
[13] Matos A R, Hourton-Cabassa C, Cicek D, Arrabaca J D, Zachowski A, Moreau F. Alternative oxidase involvement in cold stress response of Arabidopsis thaliana fad2 and fad3+ cell suspensions altered in membrane lipid composition. Plant Cell Physiol, 2007, 48:856-865.
pmid: 17507388
[14] Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton ( Gossypium hirsutum). J Exp Bot, 2008, 59:2043-2056.
doi: 10.1093/jxb/ern065 pmid: 18453533
[15] Watanabe K, Oura T, Sakai H, Kajiwara S. Yeast Δ 12 fatty acid desaturase: gene cloning, expression, and function. Biosci Biotechnol Biochem, 2004, 68:721-727.
doi: 10.1271/bbb.68.721
[16] 薛晓梦, 李建国, 白冬梅, 晏立英, 万丽云, 康彦平, 淮东欣, 雷永, 廖伯寿. 花生FAD2基因家族表达分析及其低温胁迫的响应. 作物学报, 2019, 45:1586-1594.
Xue X M, Li J G, Bai D M, Yan L Y, Wan L Y, Kang Y P, Huai D X, Lei Y, Liao B S. Expression profiles of FAD2 genes and their responses to cold stress in peanut. Acta Agron Sin, 2019, 45:1586-1594 (in Chinese with English abstract).
[17] 阮建, 单雷, 李新国, 郭峰, 孟静静, 万书波, 彭振英. 花生FAD基因家族的全基因组鉴定与表达模式分析. 山东农业科学, 2018, 50(6):1-9.
Ruan J, Shan L, Li X G, Guo F, Meng J J, Wan S B, Peng Z Y. Genome-wide identification and expression pattern analysis of peanut FAD gene family. Shandong Agric Sci, 2018, 50(6):1-9 (in Chinese with English abstract).
[18] 李春娟, 闫彩霞, 张廷婷, 马超, 单世华. 温度对不同花生品种种子活力的影响. 花生学报, 2012, 41(1):21-25.
Li C J, Yan C X, Zhang Y T, Ma C, Shan S H. Effect of temperature on vigor of peanut seed and quality components. J Peanut Sci, 2012, 41(1):21-25 (in Chinese with English abstract).
[19] 黄金堂, 陈海玲, 李清华, 李淑萍, 谢志琼. 春花生与秋花生种子活力比较研究. 花生学报, 2007, 36(3):30-33.
Huang J T, Chen H L, Li Q H, Li S P, Xie Z Q. The comparative study of seed vigor between spring planted and autumn planted peanuts. J Peanut Sci, 2007, 36(3):30-33 (in Chinese with English abstract).
[20] 钱宗耀, 刘河疆, 张维维, 帕尔哈提. 气质联用-内标法测定豆类中脂肪酸含量及因子分析. 中国粮油学报, 2017, 32(2):130-134.
Qian Z Y, Liu H J, Zhang W W, Pa’erhati. Determination of fatty acids and factor analysis from beans by gas chromatography mass spectrometry using internal standard method. J Chin Cereal Oil Assoc, 2017, 32(2):130-134 (in Chinese with English abstract).
[21] 中华人民共和国国家国家卫生健康委员会. GB 5009.168-2016食品安全国家标准食品中脂肪酸的测定, 2016
National Health Commission of the People’s Republic of China. GB 5009.168-2016 National Food Safety Standard—Determination of Fatty Acid in Foods. 2016 (in Chinese).
[22] 钟鹏, 刘杰, 王建丽, 常博文. 花生对低温胁迫的生理响应及抗寒性评价. 核农学报, 2018, 32:1195-1202.
Zhong P, Liu J, Wang J L, Chang B W. Physiological responses and cold resistance evaluation of peanut under low-temperature stress. J Nucl Agric Sci, 2018, 32:1195-1202 (in Chinese with English abstract).
[23] 杨楠. 黄芪种子脂肪酸在幼苗形态建成中的代谢研究. 东北林业大学硕士学位论文, 黑龙江哈尔滨 2019.
Yang N. The Study on Metabolism of Fatty Acids of Astragalus membranaceus Seeds during Seedling Morphology. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[24] 王允, 刘婷, 张建航, 和小燕, 张幸果, 马立兴, 殷冬梅. 花生种子发育时期脂肪酸积累与降解模式. 中国油料作物学报, 2017, 39:366-371.
Wang Y, Liu T, Zhang J H, He X Y, Zhang X G, Ma L X, Yin D W. Accumulation and degradation pattern of fatty acids during seed development and germination of peanut. Chin J Oil Crop Sci, 2017, 39:366-371 (in Chinese with English abstract).
[25] 王雯怡. FAD2基因家族影响植物油含量差异的分子机制研究. 浙江工业大学硕士学位论文,浙江杭州 2019.
Wang W Y. Understanding the Correlation between FAD2 Gene Family and the Divergence of Vegetable Oil Content in Plants. MS Thesis of Zhejiang University of Technology, Hangzhou, Zhejiang, China, 2019 (in Chinese with English abstract).
[26] 于树涛, 于国庆, 孙泓希, 王虹, 史普想, 于洪波, 王传堂. 气相色谱与近红外技术辅助选育高油酸花生新品种阜花27. 农业科技通讯, 2018, (12):140-141.
Yu S T, Yu G Q, Sun H X, Wang H, Shi P X, Yu H B, Wang C T. Breeding of Fuhua 27, a high peanut variety with high oleic acid content by gas chromatography and near-infrared spectroscopy. Bull Agric Sci Technol, 2018, (12):140-141 (in Chinese).
[27] 于树涛, 于国庆, 于洪波, 王传堂. 高油酸花生新品种阜花22的选育. 辽宁农业科学, 2018, (5):87-88.
Yu S T, Yu G Q, Yu H B, Wang C T. Breeding of Fuhua 22, a peanut variety with high oleic acid content. Liaoning Agric Sci, 2018, (5):87-88 (in Chinese).
[28] 潘丽娟, 王通, 韩鹏, 陈明娜, 陈娜, 王冕, 杨珍, 禹山林, 迟晓元. 高油酸新品种花育917在花生主产区的展示试验. 花生学报, 2019, 48(1):62-65.
Pan L J, Wang T, Han P, Chen M N, Chen N, Wang M, Yang Z, Yu S L, Chi X Y. Experiment performance of high-oleic peanut variety Huayu 917 in the main producing areas of peanut in China. J Peanut Sci, 2019, 48(1):62-65 (in Chinese with English abstract).
[1] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[2] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[3] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[4] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[5] 常博文,钟鹏,刘杰,唐中华,高亚冰,于洪久,郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130.
[6] 王道平,徐江,牟永莹,闫文秀,赵梦洁,马博,李群,张丽娜,潘映红. 表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析[J]. 作物学报, 2018, 44(6): 897-908.
[7] 郝心愿,岳川,唐湖,钱文俊,王玉春,王璐,王新超,杨亚军. 茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425.
[8] 杨慧菊,郭华春*. 低温胁迫下马铃薯的数字基因表达谱分析[J]. 作物学报, 2017, 43(03): 454-463.
[9] 李馨园,杨晔,张丽芳,左师宇,李丽杰,焦健,李晶. 外源ABA对低温胁迫下玉米幼苗内源激素含量及Asr1基因表达的调节[J]. 作物学报, 2017, 43(01): 141-148.
[10] 刘自刚,袁金海,孙万仓,曾秀存,方彦,王志江,武军艳,方园,李学才,米超. 低温胁迫下白菜型冬油菜差异蛋白质组学及光合特性分析[J]. 作物学报, 2016, 42(10): 1541-1550.
[11] 郝小琴,姚鹏鹤,高峥荣,吴子恺. 低温胁迫对微胚乳超甜超高油玉米耐寒性生理生化特性的影响[J]. 作物学报, 2014, 40(08): 1470-1484.
[12] 荐红举,肖阳,李加纳,马珍珍,魏丽娟,刘列钊. 基于SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL[J]. 作物学报, 2014, 40(04): 629-635.
[13] 孙富,杨丽涛,谢晓娜,刘光玲,李杨瑞. 低温胁迫对不同抗寒性甘蔗品种幼苗叶绿体生理代谢的影响[J]. 作物学报, 2012, 38(04): 732-739.
[14] 伍少云, 周国雁. 中期种质库贮藏下真空和非真空包装普通小麦种子的衰老特性及寿命差异[J]. 作物学报, 2011, 37(06): 1109-1115.
[15] 郑昀晔;曹栋栋;张胜;关亚静;胡晋. 多胺对玉米种子吸胀期间耐冷性和种子发芽能力的影响[J]. 作物学报, 2008, 34(02): 261-267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!