作物学报 ›› 2019, Vol. 45 ›› Issue (3): 411-418.doi: 10.3724/SP.J.1006.2019.84090
Xiao-Han MA,Jie ZHANG,Huan-Wei ZHANG,Biao CHEN,Xin-Yi WEN,Zi-Cheng XU()
摘要:
茉莉酸甲酯(MeJA)是可参与多种生理生化过程的激发子, 为探究外源MeJA对低温环境下烟草幼苗的影响, 以烟草品种“豫烟10号”为材料, 在其六叶一心时用4个不同浓度(1、10、100和1000 μmol L -1MeJA)进行喷施处理3 d后, 再进行低温处理, 同时以正常温度和低温处理作为阳性和阴性对照。分析各处理的长势指标、相对电解质渗透率、光合色素含量、抗氧化酶活性以及激素含量。结果表明: 在10 μmol L -1茉莉酸甲酯处理下能降低低温对烟草幼苗的损伤。然后在材料和时期不变的情况下, 进行DPI、10 μmol L -1 MeJA以及DPI+MeJA处理以低温处理为对照, 测定了H2O2、O 2-、CAT、MDA以及ASA-GSH循环的含量。证明在外源茉莉酸甲酯协同低温的处理下, 烟草植株中的H2O2主要作为毒害分子而非第二信使存在。
[1] | Fan T F, Cheng X Y, Shi D X, He M J, Yang C, Liu L, Li C J, Sun Y C, Chen Y Y, Xu C, Zhang L, Liu L H . Molecular identification of tobacco NtAMT1.3 that mediated ammonium root-influx with high affinity and improved plant growth on ammonium when overexpressed in Arabidopsis and tobacco. Plant Sci, 2017,264:102-111. |
[2] |
Augspurger C K . Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing. Ecology, 2013,94:41-50.
doi: 10.1890/12-0200.1 |
[3] |
Menéndez A B, Rodriguez A A, Maiale S J, Rodriguez K M ,Jimenez B J F, Ruiz O A . Polyamines Contribution to the Improvement of Crop Plants Tolerance to Abiotic Stress. Springer New York, 2013, pp 113-136.
doi: 10.1007/978-1-4614-4633-0_5 |
[4] |
Ma X, Chen C, Yang M, Dong X C, Lyu W, Meng Q W . Cold-regulated protein (SlCOR413IM1) confers chilling stress tolerance in tomato plants. Plant Physiol Biochem, 2018,124:29-39.
doi: 10.1016/j.plaphy.2018.01.003 |
[5] |
Per T S ,Khan M I R, Anjum N A, Masood A, Hussain S J, Khan N A . Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot, 2018,145:104-120.
doi: 10.1016/j.envexpbot.2017.11.004 |
[6] |
Cai Y, Cao S, Yang Z, Zheng Y . MeJA regulates enzymes involved in ascorbic acid and glutathione metabolism and improves chilling tolerance in loquat fruit. Postharvest Biol Tech, 2011,59:324-326.
doi: 10.1016/j.postharvbio.2010.08.020 |
[7] |
Qi X N, Xiao Y Y, Fan Z Q, Chen J Y, Lu W J, Kuang J F . A banana fruit transcriptional repressor MaERF10 interacts with MaJAZ3 to strengthen the repression of JA biosynthetic genes involved in MeJA-mediated cold tolerance. Postharvest Biol Tech, 2016,120:222-231.
doi: 10.1016/j.postharvbio.2016.07.001 |
[8] |
Wani S H, Kumar V, Shriram V, Sah S K . Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J, 2016,4:162-176.
doi: 10.1016/j.cj.2016.01.010 |
[9] | 娄亚楠, 王召军, 杨欣玲, 张洪映, 牛德新, 杨永锋, 崔红 . 茉莉酸甲酯对烟草分泌型和非分泌型腺毛形态发生的影响. 中国烟草学报, 2018,24(2):24-29. |
Lou Y N, Wang Z J, Yang X L, Zhang H Y, Niu D X, Yang Y F, Cui H . Effects of methyl jasmonic acid on morphogenesis of tobacco glandular and non-glandular trichomes. Acta Tab Sin, 2018,24(2):24-29 (in Chinese with English abstract). | |
[10] |
Shin H, Min K, Arora R . Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves. Cryobiology, 2017,81:192-200.
doi: 10.1016/j.cryobiol.2017.10.006 |
[11] | 杨新良, 陈也君, 胡高云, 李乾斌 . NADPH氧化酶及其抑制剂的研究进展. 药学学报, 2016,51:499-506. |
Yang X L, Chen Y J, Hu G Y, Li Q B . Research progress of NADPH oxidases and their inhibitors. Acta Pharm Sin, 2016,51:499-506 (in Chinese with English abstract). | |
[12] |
韩锦峰, 岳彩鹏, 刘华山, 苗红梅, 王德勤, 岳红波 . 烤烟生长发育的低温诱导研究: I. 苗期低温诱导对烤烟顶芽发育及激素含量的影响. 中国烟草学报, 2002,8(1):27-31.
doi: 10.3321/j.issn:1004-5708.2002.01.005 |
Han J F, Yue C P, Liu H S, Miao H M, Wang D Q, Yue H B . Low temperature induction of growth and development of flue-cured tobacco: I. Effects of low temperature induction at seedling stage on shoot bud development and hormone content in flue-cured tobacco. Acta Tab Sin, 2002,8(1):27-31 (in Chinese with English abstract).
doi: 10.3321/j.issn:1004-5708.2002.01.005 |
|
[13] |
郑凤君, 华南金秋, 张立猛, 李江舟, 计思贵, 林杉 . 长宽法测定幼苗期烟草叶面积的校正系数. 中国烟草科学, 2015,36(6):13-16.
doi: 10.13496/j.issn.1007-5119.2015.06.003 |
Zheng F J ,Hua N J Q, Zhang L M, Li J Z, Ji S G, Lin S . Revision of the length-width method correction coefficient in measuring leaf area of tobacco plants at the seedling stage. Chin Tob Sci, 2015,36(6):13-16 (in Chinese with English abstract).
doi: 10.13496/j.issn.1007-5119.2015.06.003 |
|
[14] |
Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H . Chitosan-elicited callose synthesis in soybean cells as a ca-dependent process. Plant Physiol, 1985,77:544-551.
doi: 10.1104/pp.77.3.544 |
[15] | Lichtenthaler H K, Buschmann C . Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscop. John Wiley & Sons,Inc, 2001. p 1230. |
[16] |
Veselov S Y, Kudoyarova G R, Egutkin N L ,Gyuli-Zade V Z, Mustafina A R, Kof E M. Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole-3-acetic acid. Physiol Plant, 2010,86:93-96.
doi: 10.1111/j.1399-3054.1992.tb01316.x |
[17] |
Jabs T, Dietrich R A, Dangl J L . Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 1996,273:1853-1856.
doi: 10.1126/science.273.5283.1853 |
[18] |
Dhindsa R S, Matowe W . Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot, 1981,32:79-91.
doi: 10.1093/jxb/32.1.79 |
[19] |
Pinheiro H A, Damatta F M, Arm C ,Fontes E P B, Loureiro M E . Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci, 2004,167:1307-1314.
doi: 10.1016/j.plantsci.2004.06.027 |
[20] | Law M Y, Charles S A, Halliwell B . Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochem J, 1983,210:899. |
[21] |
Nakano Y, Asada K . Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981,22:867-880.
doi: 10.1093/oxfordjournals.pcp.a076232 |
[22] |
Foyer C H, Halliwell B . The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 1976,133:21-25.
doi: 10.1007/BF00386001 |
[23] |
Ghasemi P A, Sajjadi S E, Parang K . A review (research and patents) on jasmonic acid and its derivatives. Arch Pharm, 2014,347:229-239.
doi: 10.1002/ardp.v347.4 |
[24] |
Battal P, Erez M E, Turker M, Berber I . Molecular and physiological changes in maize (Zea mays) induced by exogenous NAA, ABA and MeJA during cold stress. Ann Bot Fenn, 2008,45:173-185.
doi: 10.5735/085.045.0302 |
[25] |
Fan L, Wang Q, Lyu J, Gao L, Zou J H, Shi J Y . Amelioration of postharvest chilling injury in cowpea (Vigna sinensis) by methyl jasmonate (MeJA) treatments. Sci Hortic(Amsterdam), 2016,203:95-101.
doi: 10.1016/j.scienta.2016.03.010 |
[26] |
Cao S F, Zheng Y H, Wang K T, Rui H J, Tang S S . Effect of methyl jasmonate on cell wall modification of loquat fruit in relation to chilling injury after harvest. Food Chem, 2010,118:641-647.
doi: 10.1016/j.foodchem.2009.05.047 |
[27] |
Li D M, Guo Y K, Li Q, Zhang J, Wang X J, Bai J G . The pretreatment of cucumber with methyl jasmonate regulates antioxidant enzyme activities and protects chloroplast and mitochondrial ultrastructure in chilling-stressed leaves. Sci Hortic(Amsterdam), 2012,143:135-143.
doi: 10.1016/j.scienta.2012.06.020 |
[28] |
Li X J, Yang M . Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. BBA-Proteins Proteom, 2010,1804:929-940.
doi: 10.1016/j.bbapap.2010.01.004 pmid: 20079886 |
[29] |
De Smet I, Voss U, Lau S, Wilson M, Shao N, Timme RE, Swarup R, Kerr I, Hodqman C, Bock R, Bennett M, Jürqens G, Beeckman T . Unraveling the evolution of auxin signaling. Plant Physiol, 2011,155:209-221.
doi: 10.1104/pp.110.168161 pmid: 21081694 |
[30] |
Mittler R . Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002,7:405-410.
doi: 10.1016/S1360-1385(02)02312-9 pmid: 12234732 |
[1] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[2] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[3] | 山雨思, 辛正琦, 何潇, 代欢欢, 吴能表. 外源茉莉酸甲酯对UV-B胁迫下颠茄生物碱积累及TAs代谢途径调控的机制探究[J]. 作物学报, 2020, 46(12): 1894-1904. |
[4] | 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594. |
[5] | 常博文,钟鹏,刘杰,唐中华,高亚冰,于洪久,郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130. |
[6] | 王道平,徐江,牟永莹,闫文秀,赵梦洁,马博,李群,张丽娜,潘映红. 表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析[J]. 作物学报, 2018, 44(6): 897-908. |
[7] | 郝心愿,岳川,唐湖,钱文俊,王玉春,王璐,王新超,杨亚军. 茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425. |
[8] | 杨慧菊,郭华春*. 低温胁迫下马铃薯的数字基因表达谱分析[J]. 作物学报, 2017, 43(03): 454-463. |
[9] | 李馨园,杨晔,张丽芳,左师宇,李丽杰,焦健,李晶. 外源ABA对低温胁迫下玉米幼苗内源激素含量及Asr1基因表达的调节[J]. 作物学报, 2017, 43(01): 141-148. |
[10] | 李帅,赵秋棱,彭阳,徐熠,李加纳,倪郁*. SA、MeJA和ACC处理对甘蓝型油菜叶角质层蜡质组分、结构及渗透性的影响[J]. 作物学报, 2016, 42(12): 1827-1833. |
[11] | 刘自刚,袁金海,孙万仓,曾秀存,方彦,王志江,武军艳,方园,李学才,米超. 低温胁迫下白菜型冬油菜差异蛋白质组学及光合特性分析[J]. 作物学报, 2016, 42(10): 1541-1550. |
[12] | 郝小琴,姚鹏鹤,高峥荣,吴子恺. 低温胁迫对微胚乳超甜超高油玉米耐寒性生理生化特性的影响[J]. 作物学报, 2014, 40(08): 1470-1484. |
[13] | 孙富,杨丽涛,谢晓娜,刘光玲,李杨瑞. 低温胁迫对不同抗寒性甘蔗品种幼苗叶绿体生理代谢的影响[J]. 作物学报, 2012, 38(04): 732-739. |
[14] | 郑昀晔;曹栋栋;张胜;关亚静;胡晋. 多胺对玉米种子吸胀期间耐冷性和种子发芽能力的影响[J]. 作物学报, 2008, 34(02): 261-267. |
[15] | 汤日圣;王红;曹显祖. MeJA对水稻种子萌发和秧苗生长的调控效应[J]. 作物学报, 2002, 28(03): 333-338. |
|