欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (10): 1417-1425.doi: 10.3724/SP.J.1006.2017.01417

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式

郝心愿1,**,岳川1,2,**,唐湖1,钱文俊1,王玉春1,王璐1,王新超1,*,杨亚军1,*   

  1. 1中国农业科学院茶叶研究所 / 国家茶树改良中心 / 农业部茶树生物学与资源利用重点实验室,浙江杭州31008;2福建农林大学园艺学院,福建福州350002
  • 收稿日期:2017-02-13 修回日期:2017-05-10 出版日期:2017-10-12 网络出版日期:2017-05-23
  • 通讯作者: 王新超, E-mail: xcw75@tricaas.com Tel: 0571-86653162; 杨亚军: E-mail: yjyang@tricaas.com
  • 基金资助:

    本研究由浙江省自然科学基金项目(LY16C160001), 国家现代农业产业技术体系建设专项(CARS-23)和中国农业科学院农业科技创新工程(CAAS-ASTIP-2014-TRICAAS)资助。

Cloning of β-amylase Gene (CsBAM3) and ItsExpression ModelResponseto Cold Stress in Tea Plant

HAO Xin-Yuan1,**,YUEChuan1,2,**,TANG Hu1,QIAN Wen-Jun1,WANG Yu-Chun1,WANG Lu1, WANG Xin-Chao1,YANG Ya-Jun1,*   

  1. 1 Tea Research Institute, Chinese Academy of Agricultural Sciences / National Center for Tea Improvement / Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China; 2College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2017-02-13 Revised:2017-05-10 Published:2017-10-12 Published online:2017-05-23
  • Contact: 王新超, E-mail: xcw75@tricaas.com Tel: 0571-86653162; 杨亚军: E-mail: yjyang@tricaas.com
  • Supported by:

    This study was supported by the Zhejiang Provincial Natural Science Foundation (LY16C160001), the Earmarked Fund for China Agriculture Research System (CARS-23), and the Chinese Academy of Agricultural Sciences through an Innovation Project for Agricultural Sciences and Technology (CAAS-ASTIP-2014-TRICAAS).

摘要:

β-淀粉酶(BAM)是植物中参与淀粉水解的关键酶类,在应对非生物胁迫中发挥重要作用。从前期茶树冷驯化转录组分析中分离到1个参与淀粉代谢的差异表达基因,cDNA全长克隆及序列分析鉴定该基因为拟南芥BAM3同源基因,命名为CsBAM3。该基因编码548个氨基酸残基,与拟南芥的BAM1和BAM3一起归为第II亚家族,推测为叶绿体定位、具有淀粉水解活性的β-淀粉酶编码基因。启动子克隆及序列分析显示该基因可能受生理节律、光、低温及多种激素等信号共同调控。CsBAM3在叶片中表达量最高,茎和花中表达量较低,根中基本不表达。CsBAM3在冷驯化初期被显著上调且一直保持相对较高的水平。成熟叶片及嫩芽(一芽二叶)中的CsBAM3均可以被4℃及0℃低温显著上调,且嫩芽中基因的表达量上调幅度明显高于成熟叶。模拟倒春寒低温条件下,检测不同萌发阶段新梢中CsBAM3的表达情况表明,CsBAM3在鲜叶初展的嫩芽中即可快速受低温诱导。以上结果表明CsBAM3是茶树中调控淀粉水解的一个重要β淀粉酶编码基因,在茶树成熟叶和嫩芽受到不同低温胁迫时其表达可被快速诱导。

关键词: β淀粉酶, 茶树, 基因克隆, 低温胁迫, 表达调控

Abstract:

A major enzyme of starch breakdown in plant leaf, β-amylase (BAM), plays important roles in response to abiotic stresses. In tea plant, a differentially expressed gene involved in starch metabolism was identified from previous RNA-Seq analysis of cold acclimation. Its full-length cDNA was cloned and sequenced, showing that it is a homolog of BAM3 in Arabidopsis (named CsBAM3). CsBAM3 contains 548 amino acid residues and is grouped into subfamily II together with BAM1 and BAM3 from Arabidopsis. According to protein sequence and 3D structure analyses, CsBAM3 was considered as a chloroplast-targeted protein with β-amylase activity. Promoter cloning and sequence analysis showed a couple of responsive elements related to circadian, light, cold and phytohormone, indicating its complex regulating mechanism. CsBAM3 showed the expression higher in leaf, relative lower in stem and flower and extremely low in root. The expression of CsBAM3 in mature leaf was significantly up-regulated during the early time courses of winter cold acclimation and maintained at relative high level during the following period. With the treatments of 4℃ and 0℃, the transcript levels of CsBAM3 in both mature leaves and young shoots were dramatically increased, interestingly, much higher level was detected in young shoots. The cold environment similar to spring cold spell was created using climate chamber. And the expression changes of CsBAM3 in shoots were determined then after the tea plants were moved into climatic chamber at different sprouting phrases. CsBAM3 was quickly up-regulated by cold once the first leaf unfolded. Our study illuminated that CsBAM3 is a key β-amylase coding gene involved in starch metabolism of tea plant, which can be stimulated in both mature leaves and young shoots by cold stress.

Key words: β-amylase, Tea plant, Gene clone, Cold stress, Expression regulation

[1]蒋跃林 , 李倬. 我国茶树栽培界限的气候划分. 生态农业研究, 2000, 8(1): 89–92
Jiang Y L, Li Z. Climate divison of tea tree cultivated limit in China. Eco-agric Res, 2000, 8(1):89–92 (in Chinese with English abstract)
[2]郭湘, 唐茜, 许燕, 陈玖琳, 王自琴. 早春霜冻对不同茶树品种芽叶的生化成分及制茶品质的影响. 云南大学学报, 2015, 37: 930–938
Guo X, Tang Q, Xu Y, Chen J L, Wang Z Q. Effect of frost in early spring on biochemical composition and sensory qulity of new shoots in different tea cultivars. J Yunnan Univ, 2015, 37: 930–938 (in Chinese with English abstract)
[3]Wang X C, Zhao Q Y, Ma C L, Zhang Z H, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X, Yang Y J. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom, 2013, 14: 415
[4]Benina M, Obata T, Mehterov N, Ivanov I, Petrov V, Toneva V, Fernie A R, Gechev T S. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. Front Plant Sci, 2013, 4: 499
[5]Lee J H, Yu D J, Kim S J, Choi D, Lee H J. Intraspecies differences in cold hardiness, carbohydrate content and beta-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation. Tree Physiol, 2012, 32: 1533–1540
[6]Janska A, Aprile A, Zamecnik J, Cattivelli L, Ovesna J. Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct Integr Genom, 2011, 11: 307–325
[7]Gupta A K, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci, 2005, 30: 761–76
[8]Baena-Gonzalez E, Sheen J. Convergent energy and stress signaling. Trends Plant Sci, 2008, 13: 474–482
[9]Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 2010, 13: 274–279
[10]Stitt M, Zeeman S C. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol, 2012, 15: 282–292
[11]Yu T S, Zeeman S C, Thorneycroft D, Fulton D C, Dunstan H, Lue W L, Hegemann B, Tung S Y, Umemoto T, Chapple A, Tsai D L, Wang S M, Smith A M, Chen J, Smith S M. alpha-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J Biol Chem, 2005, 280: 9773–9779
[12]Yue C, Cao H L, Wang L, Zhou Y H, Huang Y T, Hao X Y, Wang Y C, Wang B, Yang Y J. Wang X C. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Mol Biol, 2015, 88: 591–608
[13]Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith A M, Smith S M, Zeeman S C. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell, 2008, 20: 1040–1058
[14]Li J, Francisco P, Zhou W, Edner C, Steup M, Ritte G, Bond C S, Smith S M. Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding-protein. Arch Biochem Biophys, 2009, 489: 92–98
[15]Monroe J D, Storm A R, Badley E M, Lehman M D, Platt S M, Saunders L K, Schmitz J M, Torres C E. beta-Amylase1 and beta-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions. Plant Physiol, 2014, 166: 1748–1763
[16]Peng T, Zhu X, Duan N, Liu J H. PtrBAM1, a beta-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant Cell Environ, 2014, 37: 2754–2767
[17]Kaplan F, Guy C L. Beta-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol, 2004, 135: 1674–1684
[18]Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002. 14: 1675–1690
[19]Reinhold H, Soyk S, Simkova K, Hostettler C, Marafino J, Mainiero S, Vaughan C K, Monroe J D, Zeeman S C. Beta-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 2011, 23: 1391–1403
[20]丁菲. 低温胁迫下与茶树糖代谢相关基因的克隆与表达.安徽农业大学硕士学位论文, 安徽合肥, 2012
Ding F. Cloning and Expression of Genes Related to Glyconmetabolism in Tea Plant (Camellia sinensis (L.) O. Kuntze) Under Low Temperature. MS Thesis of Anhui Agricultural  University,Hefei, China, 2012 (in Chinese with English abstract)
[21]岳川. 茶树糖类相关基因的挖掘及其在茶树冷驯化中的表达研究. 中国农业科学院博士学位论文,北京, 2015
Yue C. Cloning and Expression Analysis of Sugar-Related Genes during Cold Acclimation in Tea Plant. PhD Dissertation of Chinese Academy of Agricultural Sciences,Beijing, China, 2015 (in Chinese with English abstract)
[22]Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 11: 113–116
[23]Hao X, Horvath D P, Chao W S, Yang Y, Wang X, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int J Mol Sci, 2014, 15: 22155–22172
[24]彭婷. 枳叶片抑制差减杂交cDNA文库构建及PtrBAM1基因抗寒功能鉴定. 华中农业大学博士学位论文,中国武汉, 2013
Peng T. Suppression Subtractive Hybridization cDNA Library Construction for Low Temperature-Treated Poncirus trifoliata and Characterization of PtrBAM1. PhD Dissertation of Huangzhong Agurcultural University, Wuhan, China, 2013 (in Chinese with English abstract)
[25]Sparla F, Costa A, Lo Schiavo F, Pupillo P, Trost P. Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol, 2006, 141: 840–850
[26]Kaplan F, Guy CL. RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J, 2005, 44: 730–743
[27]Ingkasuwan P, Netrphan S, Prasitwattanaseree S, Tanticharoen M, Bhumiratana S, Meechai A, Chaijaruwanich J, Takahashi H, Cheevadhanarak S. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model. BMC Syst Biol, 2012, 6: 100
[28]Davies P J. Plant Hormones. Netherlands: Springer-Verlag, XI, 2010, p 833
[29]Takeda S, Kowyama Y, Takeuchi Y, Matsuoka K, Nishimura M, Nakamura K. Spatial patterns of sucrose-inducible and polygalacturonic acid-inducible expression of genes that encode sporamin and β-amylase in sweet potato: gene structure and expression. Plant Cell Physiol, 1995, 36: 321–333
[30]Samojedny D, Orzechowski S. New look at starch degradation in Arabidopsis thaliana L. chloroplasts. Postepy Biochem, 2007, 53: 74–83
[31]Shin H, Oh Y, Kim D. Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in Prunus persica. Physiol Plant, 2015, 154: 485–499

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[4] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[5] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[6] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[7] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[8] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[9] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[10] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[11] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[12] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[13] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[14] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[15] 常博文,钟鹏,刘杰,唐中华,高亚冰,于洪久,郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!