[1]蒋跃林 , 李倬. 我国茶树栽培界限的气候划分. 生态农业研究, 2000, 8(1): 89–92
Jiang Y L, Li Z. Climate divison of tea tree cultivated limit in China. Eco-agric Res, 2000, 8(1):89–92 (in Chinese with English abstract)
[2]郭湘, 唐茜, 许燕, 陈玖琳, 王自琴. 早春霜冻对不同茶树品种芽叶的生化成分及制茶品质的影响. 云南大学学报, 2015, 37: 930–938
Guo X, Tang Q, Xu Y, Chen J L, Wang Z Q. Effect of frost in early spring on biochemical composition and sensory qulity of new shoots in different tea cultivars. J Yunnan Univ, 2015, 37: 930–938 (in Chinese with English abstract)
[3]Wang X C, Zhao Q Y, Ma C L, Zhang Z H, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X, Yang Y J. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom, 2013, 14: 415
[4]Benina M, Obata T, Mehterov N, Ivanov I, Petrov V, Toneva V, Fernie A R, Gechev T S. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. Front Plant Sci, 2013, 4: 499
[5]Lee J H, Yu D J, Kim S J, Choi D, Lee H J. Intraspecies differences in cold hardiness, carbohydrate content and beta-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation. Tree Physiol, 2012, 32: 1533–1540
[6]Janska A, Aprile A, Zamecnik J, Cattivelli L, Ovesna J. Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues. Funct Integr Genom, 2011, 11: 307–325
[7]Gupta A K, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci, 2005, 30: 761–76
[8]Baena-Gonzalez E, Sheen J. Convergent energy and stress signaling. Trends Plant Sci, 2008, 13: 474–482
[9]Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 2010, 13: 274–279
[10]Stitt M, Zeeman S C. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol, 2012, 15: 282–292
[11]Yu T S, Zeeman S C, Thorneycroft D, Fulton D C, Dunstan H, Lue W L, Hegemann B, Tung S Y, Umemoto T, Chapple A, Tsai D L, Wang S M, Smith A M, Chen J, Smith S M. alpha-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J Biol Chem, 2005, 280: 9773–9779
[12]Yue C, Cao H L, Wang L, Zhou Y H, Huang Y T, Hao X Y, Wang Y C, Wang B, Yang Y J. Wang X C. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Mol Biol, 2015, 88: 591–608
[13]Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith A M, Smith S M, Zeeman S C. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell, 2008, 20: 1040–1058
[14]Li J, Francisco P, Zhou W, Edner C, Steup M, Ritte G, Bond C S, Smith S M. Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding-protein. Arch Biochem Biophys, 2009, 489: 92–98
[15]Monroe J D, Storm A R, Badley E M, Lehman M D, Platt S M, Saunders L K, Schmitz J M, Torres C E. beta-Amylase1 and beta-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions. Plant Physiol, 2014, 166: 1748–1763
[16]Peng T, Zhu X, Duan N, Liu J H. PtrBAM1, a beta-amylase-coding gene of Poncirus trifoliata, is a CBF regulon member with function in cold tolerance by modulating soluble sugar levels. Plant Cell Environ, 2014, 37: 2754–2767
[17]Kaplan F, Guy C L. Beta-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol, 2004, 135: 1674–1684
[18]Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002. 14: 1675–1690
[19]Reinhold H, Soyk S, Simkova K, Hostettler C, Marafino J, Mainiero S, Vaughan C K, Monroe J D, Zeeman S C. Beta-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 2011, 23: 1391–1403
[20]丁菲. 低温胁迫下与茶树糖代谢相关基因的克隆与表达.安徽农业大学硕士学位论文, 安徽合肥, 2012
Ding F. Cloning and Expression of Genes Related to Glyconmetabolism in Tea Plant (Camellia sinensis (L.) O. Kuntze) Under Low Temperature. MS Thesis of Anhui Agricultural University,Hefei, China, 2012 (in Chinese with English abstract)
[21]岳川. 茶树糖类相关基因的挖掘及其在茶树冷驯化中的表达研究. 中国农业科学院博士学位论文,北京, 2015
Yue C. Cloning and Expression Analysis of Sugar-Related Genes during Cold Acclimation in Tea Plant. PhD Dissertation of Chinese Academy of Agricultural Sciences,Beijing, China, 2015 (in Chinese with English abstract)
[22]Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 11: 113–116
[23]Hao X, Horvath D P, Chao W S, Yang Y, Wang X, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int J Mol Sci, 2014, 15: 22155–22172
[24]彭婷. 枳叶片抑制差减杂交cDNA文库构建及PtrBAM1基因抗寒功能鉴定. 华中农业大学博士学位论文,中国武汉, 2013
Peng T. Suppression Subtractive Hybridization cDNA Library Construction for Low Temperature-Treated Poncirus trifoliata and Characterization of PtrBAM1. PhD Dissertation of Huangzhong Agurcultural University, Wuhan, China, 2013 (in Chinese with English abstract)
[25]Sparla F, Costa A, Lo Schiavo F, Pupillo P, Trost P. Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol, 2006, 141: 840–850
[26]Kaplan F, Guy CL. RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J, 2005, 44: 730–743
[27]Ingkasuwan P, Netrphan S, Prasitwattanaseree S, Tanticharoen M, Bhumiratana S, Meechai A, Chaijaruwanich J, Takahashi H, Cheevadhanarak S. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model. BMC Syst Biol, 2012, 6: 100
[28]Davies P J. Plant Hormones. Netherlands: Springer-Verlag, XI, 2010, p 833
[29]Takeda S, Kowyama Y, Takeuchi Y, Matsuoka K, Nishimura M, Nakamura K. Spatial patterns of sucrose-inducible and polygalacturonic acid-inducible expression of genes that encode sporamin and β-amylase in sweet potato: gene structure and expression. Plant Cell Physiol, 1995, 36: 321–333
[30]Samojedny D, Orzechowski S. New look at starch degradation in Arabidopsis thaliana L. chloroplasts. Postepy Biochem, 2007, 53: 74–83
[31]Shin H, Oh Y, Kim D. Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in Prunus persica. Physiol Plant, 2015, 154: 485–499 |