欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (04): 629-635.doi: 10.3724/SP.J.1006.2014.00629

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL

荐红举**,肖阳**,李加纳,马珍珍,魏丽娟,刘列钊*   

  1. 西南大学农学与生物科技学院 / 重庆市油菜工程技术研究中心, 重庆 400716
  • 收稿日期:2013-06-29 修回日期:2013-10-29 出版日期:2014-04-12 网络出版日期:2014-01-17
  • 通讯作者: 刘列钊, E-mail: liezhao2003@126.com, Tel: 023-68250701
  • 基金资助:

    本研究由国家自然科学基金项目(31171584)和中央高校基本科研业务费专项(100030-2120131106)项目资助。

Mappingof QTLs for OilseedGermination RateunderStresses of Salinity and Drought in Brassica napus L. Based on SNP Genetic Map

JIAN Hong-Ju**,XIAO Yang**,LI Jia-Na,MA Zhen-Zhen,WEI Li-Juan,LIU Lie-Zhao*   

  1. College of Agronomy and Biotechnology, Southwest University / Chongqing Engineering Research Center for Rapeseed, Chongqing 400716, China
  • Received:2013-06-29 Revised:2013-10-29 Published:2014-04-12 Published online:2014-01-17
  • Contact: 刘列钊, E-mail: liezhao2003@126.com, Tel: 023-68250701

摘要:

研究盐胁迫、干旱胁迫下甘蓝型油菜的发芽率,寻找与发芽率相关联的分子标记,可为油菜逆境胁迫下种子萌发的分子标记辅助育种提供理论依据。本研究以甘蓝型黄籽油菜GH06和甘蓝型黑籽油菜P174为亲本,通过单粒传法(single seed descent, SSD)连续自交9代构建重组自交系群体。采用16 g L–1NaCl溶液进行盐胁迫,20% (W/W)PEG-6000溶液模拟干旱胁迫,处理重组自交系种子并统计其发芽率。实验室构建的SNP遗传图谱,包含2795SNP多态性标记位点,总长1832.9 cM,相邻标记间平均距离为0.66 cM,利用该图谱并采用复合区间作图法(CIM)分析两种胁迫条件下第3天、第4天及累计4 d后发芽率的QTL。共检测到19QTL,分布于A01A03A06A07A09C06染色体上。其中,11个盐胁迫相关的QTL可解释的变异为4.9%~10.9%8个干旱胁迫相关的QTL可解释的变异为3.8%~6.9%;并且在A03A09染色体上,盐胁迫和干旱胁迫下检测到的QTL有相近区段。研究结果表明油菜种子发芽率属于典型的数量性状,受环境影响较大;且随着胁迫时间的延长,油菜种子启动了不同的基因来响应环境胁迫。

关键词: 甘蓝型油菜, 单核苷酸多态性, 发芽率, 盐胁迫, 干旱胁迫, 数量性状座位

Abstract:

The objective of this study was to identify QTLs for seed germination percentage of Brassica napus under the salinity stress and drought stress using the composite interval mapping (CIM) method. The recombinant inbred lines (RIL) population derived from a cross between yellow-seeded female parent GH06 and black-seeded male parent P174 was established by selfing for nine successive generations with single seed propagating from F2. The oilseeds were dealt with NaCl (16 g L–1 solution) for salinity stress, 20% (W/W) PEG-6000 solution for drought stress. The QTLs of germination ratein two different stress conditions were detected using the SNP genetic map constructed in 2013, which contains 2795 SNP markers with the total map length of 1832.9 cM and an average distance of 0.66 cM. A total of 19 QTLs for seed germinationrate under two stresses were located onchromosomes of A01, A03, A06, A07, A09, and C06. Twelve QTLs related to salinity stress were detected, with explained phenotypic variation from 4.9% to 10.9% of, while eight QTLs related to drought stress were detected, with explained phenotypic variation from 3.8% to 6.9% of. Some QTLs located on A03 and A09 under two stresses were detected in a near region. In conclusion, (1) the seed germination percentage is a quantitative trait controlled by many minor-effect genes, and the expression of the QTL is affected by environmental factors greatly; (2) different genes are involved in the oilseed responses to the stresses of different stages.

Key words: Brassica napus, SNP, Germination rate, Salinity stress, Drought stress, QTL

[1]傅廷栋. 中国油菜生产和品种改良的现状与前景. 安徽农学通报, 2000, 6(1): 2–8



Fu T D. Chinese rapeseed production and the improvement of the status and prospects. Anhui Agric Sci Bull, 2000, 6(1): 2–8 (in Chinese with English abstract)



[2]刘祖祺, 张石城. 植物抗性生理学. 北京: 中国农业出版社, 1994. pp 222–223



Liu Z Q, Zhang S C. Plant Resistance Physiology. Beijing: China Agriculture Press, 1994. pp 222–223 (in Chinese)



[3]戴清明, 吕爱钦, 何维君, 谢年保, 陈欣, 张志远, 匡朝凌, 瞿科. 洞庭湖区油菜主要气象灾害发生规律与减灾避灾对策. 作物研究, 2006, (1): 60–63



Dai Q M, Lü A Q, He W J, Xie N B, Chen X, Zhang Z Y, Kuang C L, Qu K. Thearising regulation and the decreasing and avoiding strategies of the main meteorological disasters on rapeseed in Dongting lake region. Crop Res, 2006, (1): 60–63 (in Chinese with English abstract)



[4]Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet, 2001, 103: 491–507



[5]Ecke W, Uzunova M, Weissleder K. Mapping the genome of rapeseed (Brassica napus L.): II. Localization of genes controlling erucic acid synthesis and seed oil content. TheorAppl Genet, 1995, 91: 972–977



[6]Thormann C E, Romero J, Mantet J, Osborn T C. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet, 1996, 93: 282–286



[7]Toroser D, Thormann C E, Osborn T C, Mithen R. RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L). TheorAppl Genet, 1995, 91: 802–808



[8]Howell P M, Sharpe A G, Lydiate D J. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome Res, 2003, 46: 454–460



[9]Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113: 33–38



[10]Zhao J W, Meng J L. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet, 2003, 106: 759–764



[11]Foolad M R, Lin G Y, Chen F Q. Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed, 1999, 118: 167–173



[12]Bettey M, Finch-Savage W E, King G J, Lynn J R. Quantitative genetic analysis of seed vigour and pre-emergence seedling growth traits in Brassicaoleracea. New Phytol, 2000, 148: 277–286



[13]Krishnasamy V, Seshu D V. Seed germination rate and associated characters in rice. Crop Sci, 1989, 29: 904–908



[14]许耀照, 孙万仓, 曾秀存, 李彩霞, 周喜旺. 盐碱胁迫冬油菜的主导因素分析. 草业科学, 2013, (3): 423–429



Xu Y Z, Sun W C, Zen X C, Li C X, Zhou X W. Analysis of the key stress factors in winter rape under simulated salinity-alkalinity mixed condition. Pratac Sci, 2013, (3): 423–429 (in Chinese with English abstract)



[15]原小燕, 符明联, 何晓莹. 不同抗旱性油菜种子萌发期抗旱指标比较研究. 干旱地区农业研究, 2012, 30(5): 77–81



Yuan XY, Fu ML, He XY.The comparative study on drought resistance index of rape with different drought resistance in germination. Agric Res Arid Areas, 2012, 30(5): 77–81 (in Chinese with English abstract)



[16]谢小玉, 张兵, 陈思岑. 油菜发芽期和苗期抗旱性鉴定评价方法. 农机化研究, 2013, (2): 112–116



Xie XY, Zhang B, Chen S C. Method of identification for characteristics of drought-against on germination and seedling growth of rape materials. J Agric Mechaniz Res, 2013, (2): 112–116 (in Chinese with English abstract)



[17]Nguyen T, Friedt W, Snowdon R. Cloning and mapping of a candidate gene for germination and seedling vigour in yellow-seeded oilseed rape. In: Fu T D ed. The 12th International Rapeseed Congress, Wuhan, 2007. p 4



[18]刘丹, 刘贵华, 王汉中. 油菜抗性相关基因的分离及其基因工程研究进展. 中国农业科技导报, 2008, 8(3): 6–11



Liu D, Liu G H, Wang H Z. Isolation of resistant genes and their gene engineering research development in rapeseed. J Agric Sci Technol, 200, 8(3): 6–11 (in Chinese with English abstract)



[19]Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Snowdon R J, Li J. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE, 2013 8(12): e83052. DOI:10.1371/journal.pone.0083052



[20]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer. Ver. 2.5 [computer program] Department of Statistics, North Carolina State University, Raleigh, NC, 2006. Available from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm



[21]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185–199



[22]Mccouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14



[23]Ganal M W, Altmann T, Roder M S. SNP identification in crop plants. Curr Opin Plant Biol, 2009, 12: 211–217



[24]Mcnally K L, Childs K L, Bohnert R, Davidson R M, Zhao K, Ulat V J, Zeller G, Clark R M, Hoen D R, Bureau T E, Stokowski R, Ballinger D G, Frazer K A, Cox D R, Padhukasahasram B, Bustamante C D, Weigel D, Mackill D J, Bruskiewich R M, Ratsch G, Buell C R, Leung H, Leach J E. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA, 2009, 106: 12273–12278



[25]Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol, 2002, 5: 94–100



[26]孙玉燕, 刘磊, 郑峥, 张春芝, 周龙溪, 宗园园, 李涛, 李君明. 番茄耐旱和耐盐遗传改良的研究进展及展望. 园艺学报, 2012, 39: 2061–2074



Sun YY, Liu L, Zheng Z, Zhang CZ, Zhou LX, Zomh YY, Li T, Li JM. A review and perspectives on genetic improvement of salt and drought tolerance in tomato. Acta Hortic Sin, 2012, 39: 2061–2074 (in Chinese with English abstract)



[27]郝岗平, 吴忠义, 陈茂盛, 曹鸣庆, Brunnel D, Pelletier G, 黄丛林, 杨清. 拟南芥CBF4基因位点的单核苷酸多态性(SNP)变化与抗旱表型的相应性. 农业生物技术学报, 2004, 12: 122–131



Hao G P, Wu Z Y, Chen MS, Cao MQ, Brunnel D, Pelletier G, Hang CL, Yang Q. Single nucleotide polymorphisms of CBF4 locus region of Arabidopsis thaliana correspond to drought tolerance. J Agric Biotechnol, 2004, 12: 122–131 (in Chinese with English abstract)



[28]Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J H, Zhu J K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006, 45: 523–539

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[5] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[11] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[12] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[13] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[14] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[15] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!