作物学报 ›› 2014, Vol. 40 ›› Issue (04): 629-635.doi: 10.3724/SP.J.1006.2014.00629
荐红举**,肖阳**,李加纳,马珍珍,魏丽娟,刘列钊*
JIAN Hong-Ju**,XIAO Yang**,LI Jia-Na,MA Zhen-Zhen,WEI Li-Juan,LIU Lie-Zhao*
摘要:
研究盐胁迫、干旱胁迫下甘蓝型油菜的发芽率,寻找与发芽率相关联的分子标记,可为油菜逆境胁迫下种子萌发的分子标记辅助育种提供理论依据。本研究以甘蓝型黄籽油菜GH06和甘蓝型黑籽油菜P174为亲本,通过单粒传法(single seed descent, SSD)连续自交9代构建重组自交系群体。采用16 g L–1的NaCl溶液进行盐胁迫,20% (W/W)的PEG-6000溶液模拟干旱胁迫,处理重组自交系种子并统计其发芽率。实验室构建的SNP遗传图谱,包含2795个SNP多态性标记位点,总长1832.9 cM,相邻标记间平均距离为0.66 cM,利用该图谱并采用复合区间作图法(CIM)分析两种胁迫条件下第3天、第4天及累计4 d后发芽率的QTL。共检测到19个QTL,分布于A01、A03、A06、A07、A09和C06染色体上。其中,11个盐胁迫相关的QTL可解释的变异为4.9%~10.9%,8个干旱胁迫相关的QTL可解释的变异为3.8%~6.9%;并且在A03和A09染色体上,盐胁迫和干旱胁迫下检测到的QTL有相近区段。研究结果表明油菜种子发芽率属于典型的数量性状,受环境影响较大;且随着胁迫时间的延长,油菜种子启动了不同的基因来响应环境胁迫。
[1]傅廷栋. 中国油菜生产和品种改良的现状与前景. 安徽农学通报, 2000, 6(1): 2–8Fu T D. Chinese rapeseed production and the improvement of the status and prospects. Anhui Agric Sci Bull, 2000, 6(1): 2–8 (in Chinese with English abstract)[2]刘祖祺, 张石城. 植物抗性生理学. 北京: 中国农业出版社, 1994. pp 222–223Liu Z Q, Zhang S C. Plant Resistance Physiology. Beijing: China Agriculture Press, 1994. pp 222–223 (in Chinese)[3]戴清明, 吕爱钦, 何维君, 谢年保, 陈欣, 张志远, 匡朝凌, 瞿科. 洞庭湖区油菜主要气象灾害发生规律与减灾避灾对策. 作物研究, 2006, (1): 60–63Dai Q M, Lü A Q, He W J, Xie N B, Chen X, Zhang Z Y, Kuang C L, Qu K. Thearising regulation and the decreasing and avoiding strategies of the main meteorological disasters on rapeseed in Dongting lake region. Crop Res, 2006, (1): 60–63 (in Chinese with English abstract)[4]Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet, 2001, 103: 491–507[5]Ecke W, Uzunova M, Weissleder K. Mapping the genome of rapeseed (Brassica napus L.): II. Localization of genes controlling erucic acid synthesis and seed oil content. TheorAppl Genet, 1995, 91: 972–977[6]Thormann C E, Romero J, Mantet J, Osborn T C. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet, 1996, 93: 282–286[7]Toroser D, Thormann C E, Osborn T C, Mithen R. RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L). TheorAppl Genet, 1995, 91: 802–808[8]Howell P M, Sharpe A G, Lydiate D J. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome Res, 2003, 46: 454–460[9]Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113: 33–38[10]Zhao J W, Meng J L. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet, 2003, 106: 759–764[11]Foolad M R, Lin G Y, Chen F Q. Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed, 1999, 118: 167–173[12]Bettey M, Finch-Savage W E, King G J, Lynn J R. Quantitative genetic analysis of seed vigour and pre-emergence seedling growth traits in Brassicaoleracea. New Phytol, 2000, 148: 277–286[13]Krishnasamy V, Seshu D V. Seed germination rate and associated characters in rice. Crop Sci, 1989, 29: 904–908[14]许耀照, 孙万仓, 曾秀存, 李彩霞, 周喜旺. 盐碱胁迫冬油菜的主导因素分析. 草业科学, 2013, (3): 423–429Xu Y Z, Sun W C, Zen X C, Li C X, Zhou X W. Analysis of the key stress factors in winter rape under simulated salinity-alkalinity mixed condition. Pratac Sci, 2013, (3): 423–429 (in Chinese with English abstract)[15]原小燕, 符明联, 何晓莹. 不同抗旱性油菜种子萌发期抗旱指标比较研究. 干旱地区农业研究, 2012, 30(5): 77–81Yuan XY, Fu ML, He XY.The comparative study on drought resistance index of rape with different drought resistance in germination. Agric Res Arid Areas, 2012, 30(5): 77–81 (in Chinese with English abstract)[16]谢小玉, 张兵, 陈思岑. 油菜发芽期和苗期抗旱性鉴定评价方法. 农机化研究, 2013, (2): 112–116Xie XY, Zhang B, Chen S C. Method of identification for characteristics of drought-against on germination and seedling growth of rape materials. J Agric Mechaniz Res, 2013, (2): 112–116 (in Chinese with English abstract)[17]Nguyen T, Friedt W, Snowdon R. Cloning and mapping of a candidate gene for germination and seedling vigour in yellow-seeded oilseed rape. In: Fu T D ed. The 12th International Rapeseed Congress, Wuhan, 2007. p 4[18]刘丹, 刘贵华, 王汉中. 油菜抗性相关基因的分离及其基因工程研究进展. 中国农业科技导报, 2008, 8(3): 6–11Liu D, Liu G H, Wang H Z. Isolation of resistant genes and their gene engineering research development in rapeseed. J Agric Sci Technol, 200, 8(3): 6–11 (in Chinese with English abstract)[19]Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Snowdon R J, Li J. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE, 2013 8(12): e83052. DOI:10.1371/journal.pone.0083052[20]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer. Ver. 2.5 [computer program] Department of Statistics, North Carolina State University, Raleigh, NC, 2006. Available from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm[21]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185–199[22]Mccouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14[23]Ganal M W, Altmann T, Roder M S. SNP identification in crop plants. Curr Opin Plant Biol, 2009, 12: 211–217[24]Mcnally K L, Childs K L, Bohnert R, Davidson R M, Zhao K, Ulat V J, Zeller G, Clark R M, Hoen D R, Bureau T E, Stokowski R, Ballinger D G, Frazer K A, Cox D R, Padhukasahasram B, Bustamante C D, Weigel D, Mackill D J, Bruskiewich R M, Ratsch G, Buell C R, Leung H, Leach J E. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA, 2009, 106: 12273–12278[25]Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol, 2002, 5: 94–100[26]孙玉燕, 刘磊, 郑峥, 张春芝, 周龙溪, 宗园园, 李涛, 李君明. 番茄耐旱和耐盐遗传改良的研究进展及展望. 园艺学报, 2012, 39: 2061–2074Sun YY, Liu L, Zheng Z, Zhang CZ, Zhou LX, Zomh YY, Li T, Li JM. A review and perspectives on genetic improvement of salt and drought tolerance in tomato. Acta Hortic Sin, 2012, 39: 2061–2074 (in Chinese with English abstract)[27]郝岗平, 吴忠义, 陈茂盛, 曹鸣庆, Brunnel D, Pelletier G, 黄丛林, 杨清. 拟南芥CBF4基因位点的单核苷酸多态性(SNP)变化与抗旱表型的相应性. 农业生物技术学报, 2004, 12: 122–131Hao G P, Wu Z Y, Chen MS, Cao MQ, Brunnel D, Pelletier G, Hang CL, Yang Q. Single nucleotide polymorphisms of CBF4 locus region of Arabidopsis thaliana correspond to drought tolerance. J Agric Biotechnol, 2004, 12: 122–131 (in Chinese with English abstract)[28]Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J H, Zhu J K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006, 45: 523–539 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[5] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[8] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[10] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[11] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[12] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[13] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[14] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[15] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
|