欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1779-1790.doi: 10.3724/SP.J.1006.2021.04151

• 研究论文 • 上一篇    下一篇

外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析

曹亮(), 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪*(), 张玉先*()   

  1. 黑龙江八一农垦大学农学院, 黑龙江大庆 163319
  • 收稿日期:2020-07-10 接受日期:2021-01-21 出版日期:2021-09-12 网络出版日期:2021-03-01
  • 通讯作者: 王孟雪,张玉先
  • 作者简介:E-mail: miss9877@126.com
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000905);黑龙江省应用技术研究与开发计划项目(GA19B101-02);黑龙江省农垦总局重点科研计划项目(HKKY190206-01)

Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin

CAO Liang(), DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue*(), ZHANG Yu-Xian*()   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2020-07-10 Accepted:2021-01-21 Published:2021-09-12 Published online:2021-03-01
  • Contact: WANG Meng-Xue,ZHANG Yu-Xian
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000905);Heilongjiang Application Technology Research and Development Projects(GA19B101-02);Heilongjiang Provincial Land Reclamation Bureau Key Research Project(HKKY190206-01)

摘要:

鼓粒期是大豆碳氮代谢最复杂的阶段, 干旱胁迫必然限制鼓粒期大豆碳氮同化、分配和转移, 影响大豆产量的形成。在我们前期的研究中, 明确了外源褪黑素对干旱胁迫下鼓粒期大豆抗旱和碳氮代谢的生理调控效应。本研究通过转录组和代谢组分析来确定褪黑素对大豆干旱条件反应的一些重要的碳氮代谢基因和途径。转录组分析表明, 与干旱胁迫处理相比, 正常供水和干旱胁迫下喷施外源褪黑素处理的大豆叶片共同上调和下调的基因分别有37个和493个。上调的基因中存在着直接和间接参与碳氮代谢的功能基因, 包括正向调控的参与半胱氨酸合成、光合作用、碳水化合物代谢和葡萄糖代谢等途径关键基因。代谢组分析发现, 与干旱胁迫处理相比, 正常供水和干旱胁迫下喷施外源褪黑素处理的大豆叶片共同上调和下调的代谢物分别有17个和43个, 上调的代谢物中绝大部分(14/17)属于氨基酸、脂质、有机酸和碳水化合物, 进一步揭示了外源褪黑素能够提高大豆碳氮代谢与抗旱的能力。结合转录组和代谢组分析发现, 褪黑素通过调节氨基酸代谢和淀粉蔗糖代谢途径, 促进干旱胁迫下β-葡萄糖苷酶基因表达, 提高了L-天冬酰胺和6-磷酸葡萄糖代谢物的含量, 最终提高了大豆的抗旱性。

关键词: 褪黑素, 大豆, 鼓粒期干旱, 碳氮代谢, 代谢组和转录组

Abstract:

The grain-filling stage is the most complex stage of carbon and nitrogen metabolism. Drought stress inevitably inhibits the assimilation, distribution, and transition of carbon and nitrogen at grain-filling stage in soybean, resulting in less soybean yield. The objective of this study was to investigate the effects of exogenous melatonin on the carbon and nitrogen metabolism genes and pathways under drought stress in soybean. Transcriptome analysis showed that, compared with drought stress treatment, 37 and 493 genes were jointly up-regulated and down-regulated in soybean leaves treated with normal water supply and treated with exogenous melatonin under drought stress, respectively. The up-regulated genes included functional genes directly and indirectly involved in carbon and nitrogen metabolism, such as the key genes involved in the cysteine synthesis pathway, photosynthesis, carbohydrate metabolism, and glucose metabolism. Metabolomic analysis revealed that, compared with drought stress treatment, 17 and 43 metabolites were jointly up-regulated and down-regulated in soybean leaves treated with normal water supply and treated with exogenous melatonin under drought stress, respectively. Most (14/17) of up-regulated metabolites were amino acids, lipids, organic acids, and carbohydrates, which further indicated that exogenous melatonin could improve soybean carbon and nitrogen metabolism and drought resistance in soybean. Combined with transcriptome and metabolomic profile, melatonin promoted the relative expression level of β-D-Glucosidase gene due to regulate the pathway of amino acid metabolism and starch and sucrose metabolism, improved the contents of L-Asparagine and D-glucose-6P metabolites, and ultimately improves the ability of drought resistance in soybean.

Key words: melatonin, soybean, drought at grain-filling stage, carbon and nitrogen metabolism, metabolome and transcriptome

图1

WW/D和DM/D比较中差异表达基因图 灰点代表无明显差异的表达基因, 红色和蓝色点分别表示在WW/D和DM/D比较中显著上调和显著下调的基因。WW为正常供水处理, D为干旱处理, DM为干旱条件下喷施褪黑素处理。"

图2

外源褪黑素对干旱胁迫下大豆叶片转录组的影响 A: 韦恩图显示了WW/D和DM/D比较之间的共同差异表达基因。B: WW/D和DM/D共同上调和下调表达的差异基因的热图。处理同图1。 "

图3

外源褪黑素上调干旱胁迫下大豆叶片基因的生物学过程富集分析 A: 热图显示了WW/D和DM/D比较之间的共同表达上调的基因。B: WW/D和DM/D比较之间的共同表达上调基因GO生物学过程富集分析。处理同图1。 "

图4

WW/D和DM/D共同上调与下调基因的KEGG富集图 A: 上调。B: 下调。富集因子的计算方法是: 差异表达基因数除以任何给定途径的基因数, 点的大小表示基因数, 点的颜色表示调整后的P值范围。处理同图1。 "

图5

差异表达基因的 RT-qPCR 验证 白色的表示差异表达基因的转录组数据, 黑色的表示差异表达基因的qRT-PCR结果。处理同图1。 "

图6

代谢组主成分分析 处理同图1。 "

图7

干旱胁迫和外源褪黑素处理对代谢组的影响 A: 韦恩图显示了WW/D和DM/D比较中共同的差异累积代谢物。B: WW/D和DM/D共同上调和下调基因的KEGG富集图。横坐标是差异表达基因数。处理同图1。 "

图8

淀粉蔗糖代谢和L-天冬酰胺代谢的KEGG途径 A: 淀粉和蔗糖代谢。B: L-天冬酰胺代谢。红色和粉色分别表示与干旱胁迫处理相比, 正常供水处理和干旱胁迫下喷施外源褪黑素大豆叶片中共同上调的代谢产物和基因。"

[1] 宫丽娟, 李秀芬, 田宝星, 王萍, 姜蓝齐, 赵慧颖. 黑龙江省大豆不同生育阶段干旱时空特征. 应用气象学报, 2020, 31:95-104.
Gong L J, Li X F, Tian B X, Wang P, Jiang L Q, Zhao H Y. Spatio-temporal characteristics drought in different growth stages of soybean in heilongjiang. J Appl Meteorol Sci, 2020, 31:95-104 (in Chinese with English abstract).
[2] 王秋京, 李秀芬, 闫平, 吕佳佳, 王晾晾, 马国忠. 黑龙江省主要农业气象灾害时序特征及其对大豆产量影响的灰色关联分析. 中国农学通报, 2020, 36(3):81-87.
Wang Q J, Li X F, Yan P, Lyu J J, Wang L L, Ma G Z. Main agro-meteorological disasters Heilongjiang: sequential characteristics and grey correlation analysis of their effects on soybean yield. Chin Agric Sci Bull, 2020, 36(3):81-87 (in Chinese with English abstract).
[3] Harrison M T, Tardieu F, Dong Z, Carlos D, Graeme L. Characterizing drought stress and trait influence on maize yield under current and future conditions. Global Change Biol, 2014, 20:867-878.
doi: 10.1111/gcb.12381 pmid: 24038882
[4] Lobell D B, Roberts M J, Schlenker W, Noah B, Bertis B L, Roderick M R, Graeme L H. Greater sensitivity to drought accompanies maize yield increase in the U.S. midwest. Science, 2014, 344:516-519.
doi: 10.1126/science.1251423
[5] Mayank A G, Jelli V, Lam-Son P T. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant, 2015, 8:1304-1320.
doi: 10.1016/j.molp.2015.05.005
[6] Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot, 2009, 103:551-560.
doi: 10.1093/aob/mcn125
[7] 屈春媛, 张玉先, 金喜军, 任春元, 张明聪, 王孟雪, 王彦宏, 李菁华, 郑浩宇, 邹京南. 干旱胁迫下外源ABA对鼓粒期大豆产量及氮代谢关键酶活性的影响. 中国农学通报, 2017, 33(34):26-31.
Qu C Y, Zhang Y X, Jin X J, Ren C Y, Zhang M C, Wang M X, Wang Y H, Li J H, Zheng H Y, Zou J N. Effect of exogenous ABA on yield and key enzyme activities of nitrogen metabolism of soybean under drought stress. Chin Agric Sci Bull, 2017, 33(34):26-31 (in Chinese with English abstract).
[8] Arnao M B, Hernández R J. Melatonin: plant growth regulator and/or biostimulator during stress. Trends Plant Sci, 2014, 19:789-797.
doi: 10.1016/j.tplants.2014.07.006
[9] Reiter R J, Tan D X, Zhou Z C, Maria H C C, Lorena F B, Annia G. Phytomelatonin: assisting plants to survive and thrive. Molecules, 2015, 20:7396-7437.
doi: 10.3390/molecules20047396
[10] Zhang N, Sun Q, Zhang H J, Cao Y Y, Sarah W, Ren S X, Guo Y D. Roles of melatonin in abiotic stress resistance in plants. J Exp Bot, 2015, 66:647-656.
doi: 10.1093/jxb/eru336 pmid: 25124318
[11] 邹京南. 外源褪黑素对干旱胁迫下大豆光合及生长的影响. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2019.
Zou J N. Effects of Exogenous Melatonin on Photosynthesis and Growth of Soybean under Drought Stress. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2019 (in Chinese with English abstract).
[12] 邹京南, 曹亮, 王梦雪, 金喜军, 任春元, 王明瑶, 于奇, 张玉先. 外源褪黑素对干旱胁迫下大豆结荚期光合及生理的影响. 生态学杂志, 2019, 38:2709-2718.
Zou J N, Cao L, Wang M X, Jin X J, Ren C Y, Wang M Y, Yu Q, Zhang Y X. Effects of exogenous melatonin on photosynthesis and physiology of soybean seedlings under drought stress. Chin J Ecol, 2019, 38:2709-2718 (in Chinese with English abstract).
[13] 邹京南, 于奇, 金喜军, 王明瑶, 秦彬, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响. 作物学报, 2020, 46:745-758.
Zou J N, Yu Q, Jin X J, Wang M Y, Qin B, Ren C Y, Wang M X, Zhang Y X. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress. Acta Agron Sin, 2020, 46:745-758 (in Chinese with English abstract).
[14] Zou J N, Jin X J, Zhang Y X, Ren C Y, Zhang M C, Wang M X. Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. Photosynthetica, 2019, 57:512-520.
doi: 10.32615/ps.2019.066
[15] Maharaj D S, Anoopkumar D S, Glass B D, Antunes E M, Lack B, Walker R B, Daya S. The identification of the UV degradants of melatonin and their ability to scavenge free radicals. J Pineal Res, 2010, 32:257-261.
doi: 10.1034/j.1600-079X.2002.01866.x
[16] Cao L, Jin X J, Zhang Y X. Melatonin confers drought stress tolerance in soybean ( Glycine max L.) by modulating photosynthesis, osmolytes, and reactive oxygen metabolism. Photosynthetica, 2019, 57:812-829.
doi: 10.32615/ps.2019.100
[17] 倪知游. 外源褪黑素对猕猴桃幼苗干旱胁迫调控机理的研究. 四川农业大学硕士学位论文, 四川成都, 2018.
Ni Z Y. Regulatory Mechanism of Exogenous Melatonin on Kiwifruit under Drought Stress. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2018 (in Chinese with English abstract).
[18] 李超. 外源褪黑素和多巴胺对苹果抗旱耐盐性的调控功能研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016.
Li C. Regulatory Function of Exogenous Melatonin and Dopamine on Salt and Drought Tolerance in Malus. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[19] 魏志为. 褪黑素对光逆境下苹果的保护功能研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2019.
Wei Z W. The Protective Function of Melatonin in Malus under Light Stress. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019 (in Chinese with English abstract).
[20] Graham I A. Carbohydrate control of gene expression in higher plants. Res Microbiol, 1996, 147:500-580.
[21] Seki M, Narusaki M, Ishida J. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full length cDNA micro array. Plant J, 2002, 31:279-292.
doi: 10.1046/j.1365-313X.2002.01359.x
[22] Wei W, Li Q T, Chu Y N, Russel J R, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot, 2015, 66:695-707.
doi: 10.1093/jxb/eru392 pmid: 25297548
[23] Hildebrandt T M, Nesi A N, Araújo W L, Hans P B. Amino acid catabolism in plants. Mol Plant, 2015, 8:1563-1579.
doi: 10.1016/j.molp.2015.09.005 pmid: 26384576
[24] Pires M V, Júnior P, Adilson A, Medeiros D B, Daloso D M, Pham P A, Barros K A, Martin K M, Florian A K, Ina M, Veronica G, Araújo W L, Fernie A R. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant Cell Environ, 2016, 39:1304-1319.
doi: 10.1111/pce.12682
[25] Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol, 2012, 63:73-105.
doi: 10.1146/annurev-arplant-042811-105439
[26] Ismail G S M. Roles of hydrogen sulfide and cysteine in alleviation of nickel induced oxidative damages in wheat seedling. Egyptian J Exp Biol, 2013, 9:105-114.
[27] Verslues P E, Sharma S. Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book, 2010, 8:e0140.
doi: 10.1199/tab.0140
[28] Antoniou C, Chatzimichail G, Xenofontos R, Pavlou J J, Panagiotou E, Christou A, Fotopoulos V. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J Pineal Res, 2017, 62:e12401.
doi: 10.1111/jpi.2017.62.issue-4
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!