作物学报 ›› 2021, Vol. 47 ›› Issue (1): 42-49.doi: 10.3724/SP.J.1006.2021.04067
孙倩1,2(), 邹枚伶2, 张辰笈2,4, 江思容2,5, Eder Jorge de Oliveira6, 张圣奎7, 夏志强2,3,4,*(), 王文泉2,3,4,5,*(), 李有志1,*()
SUN Qian1,2(), ZOU Mei-Ling2, ZHANG Chen-Ji2,4, JIANG Si-Rong2,5, Eder Jorge de Oliveira6, ZHANG Sheng-Kui7, XIA Zhi-Qiang2,3,4,*(), WANG Wen-Quan2,3,4,5,*(), LI You-Zhi1,*()
摘要:
为了对巴西木薯种质资源进行遗传多样性、亲缘关系和群体遗传结构分析, 本研究利用了7946个SNPs和1997个InDels分子标记, 通过ADMIXTURE软件进行群体结构分析、GCTA软件进行主成分分析。结果显示, 巴西木薯被划分为9个亚群。这与利用PHYLIP进行的聚类分析结果大概一致, 其中亚群1、亚群2、亚群4、亚群6和亚群8能较好地分别聚在一起, 而其他亚群中的样品大致能聚在一起, 且样品间有一定的交叉。巴西木薯种质资源遗传多样性指数(0.274)高于中国、尼日利亚等, 其中巴西木薯亚群5具有相对较高的遗传多样性水平(0.29)。巴西木薯各亚群的群体遗传分化程度较低(群体分化指数在0.03~0.15之间), 但高于中国木薯种质资源的群体分化指数。各木薯材料间的遗传距离变幅为0.084~0.297, 平均遗传距离为0.228。本研究结果可为后续关联分析发掘优良等位基因及引种提供依据。
[1] |
El-Sharkawy M A. Cassava biology and physiology. Plant Mol Biol, 2004,56:481-501.
doi: 10.1007/s11103-005-2270-7 |
[2] |
Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R. Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiol, 2012,159:1396-1407.
pmid: 22711743 |
[3] | Uchechukwu-Agua A D, Caleb O J, Opara U L. Postharvest handling and storage of fresh cassava root and products: a review. Food Bioproc Technol, 2015,8:729-748. |
[4] | 严华兵, 叶建秋, 李开绵. 中国木薯育种研究进展. 中国农学通报, 2015,31(15):63-70. |
Yan H B, Ye J Q, Li K M. Progress of cassava breeding in China. Chin Agric Sci Bull, 2015,31(15):63-70 (in Chinese with English abstract). | |
[5] | 李月仙, 刘倩, 严炜, 宋记明, 段春芳, 沈绍斌, 张林辉, 娄予强, 刘光华. 木薯种质资源在云南的形态多样性及其形态标记聚类分析. 华中农业大学学报, 2018,37(3):10-18. |
Li Y X, Liu Q, Yan W, Song J M, Duan C F, Shen S B, Zhang L H, Lou Y Q, Liu G H. Morphological diversity and clustering analysis of cassava germplasm resources in Yunnan province. J Huazhong Agric Univ, 2018,37(3):10-18 (in Chinese with English abstract). | |
[6] |
Fregene M A, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullberg U, Rosling H, Dixon A G O, Dean R, Kresovich S. Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet, 2003,107:1083-1093.
doi: 10.1007/s00122-003-1348-3 pmid: 12856084 |
[7] | Ortiz A H T, Rocha V P C, Moiana L D, Gonçalves-Vidigal M C, Galván M Z, Filho P S V. Population structure and genetic diversity in sweet cassava cultivars from Paraná, Brazil. Plant Mol Biol Rep, 2016,34:1153-1166. |
[8] |
Carvalho L J C B, Schaal B A. Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica, 2001,120:133-142.
doi: 10.1023/A:1017548930235 |
[9] |
Pradhan S K, Barik S R, Sahoo A, Mohapatra S, Nayak D K, Mahender A, Meher J, Anandan A, Pandit E. Population structure, genetic diversity and molecular marker trait association analysis for high temperature stress tolerance in rice. PLoS One, 2016,11:e0160027.
pmid: 27494320 |
[10] | Dhanapala A P, Rayb J D, Singhc S K, Hoyos-Villegasd V, Smithb J R, Purcelle L C, Kinge C A, Fritschi F B. Genome-wide association analysis of diverse soybean genotypes reveals novel markers for nitrogen traits. Plant Genome, 2015,8:1-15. |
[11] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980,8:4321-4326.
doi: 10.1093/nar/8.19.4321 pmid: 7433111 |
[12] |
Xia Z Q, Zou M L, Zhang S K, Feng B X, Wang W Q. AFSM sequencing approach: a simple and rapid method for genome-wide SNP and methylation site discovery and genetic mapping. Sci Rep, 2014,4:7300.
doi: 10.1038/srep07300 pmid: 25466435 |
[13] |
Langmead B, Salzberg S L. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012,9:357-359.
pmid: 22388286 |
[14] |
Ramu P, Esuma W, Kawuki R, Rabbi I Y, Egesi C, Bredeson J V, Bart R S, Verma J, Buckler E S, Lu F. Cassava hapmap: managing genetic load in a clonal crop species. bioRxiv, 2016. doi: https://doi.org/10.1101/077123.
doi: 10.1101/2020.11.24.390039 pmid: 33269350 |
[15] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009,25:2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943 |
[16] |
Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X Y, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012,6:80-92.
pmid: 22728672 |
[17] |
Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011,88:76-82.
doi: 10.1016/j.ajhg.2010.11.011 pmid: 21167468 |
[18] |
Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009,19:1655-1664.
doi: 10.1101/gr.094052.109 pmid: 19648217 |
[19] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, Bakker P I W D, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007,81:559-575.
pmid: 17701901 |
[20] |
Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R. The variant call format and VCFtools. Bioinformatics, 2011,27:2156-2158.
pmid: 21653522 |
[21] | Wright S. Evolution and the Genetics of Population 4: Variability Within and Among Natural Populations. Chicago & London: the University of Chicago Press, 1978. p 157. |
[22] | Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Anuu Rev Plant Biol, 2003,54:357-374. |
[23] | 张圣奎. 木薯种质资源综合评价及主要农艺性状的全基因组关联分析. 华中农业大学博士学位论文, 湖北武汉, 2018. |
Zhang S K. Phenotyping and Genome-wide Association Studies of Important Agronomic Traits in Cassava (Manihot esculenta Cranz). PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract). |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[4] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[5] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[6] | 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352. |
[7] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[8] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[9] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[10] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[11] | 王蕊, 施龙建, 田红丽, 易红梅, 杨扬, 葛建镕, 范亚明, 任洁, 王璐, 陆大雷, 赵久然, 王凤格. 玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立[J]. 作物学报, 2021, 47(4): 770-779. |
[12] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[13] | 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370. |
[14] | 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902. |
[15] | 刘畅, 孟云, 刘金栋, 王雅美, Guoyou Ye. 结合QTL-seq和连锁分析发掘水稻中胚轴伸长相关QTL[J]. 作物学报, 2021, 47(10): 2036-2044. |
|