欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (1): 30-41.doi: 10.3724/SP.J.1006.2021.04090

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花GbSTK基因调控开花和黄萎病抗性的功能研究

崔静(), 王志城, 张新雨, 柯会锋, 吴立强, 王省芬, 张桂寅, 马峙英, 张艳*()   

  1. 华北作物改良与调控国家重点实验室 / 河北省棉花产业协同创新中心 / 河北农业大学, 河北保定 071001
  • 收稿日期:2020-04-11 接受日期:2020-08-19 出版日期:2021-01-12 网络出版日期:2020-09-21
  • 通讯作者: 张艳
  • 作者简介:E-mail: cuijing1240861235@qq.com
  • 基金资助:
    河北省杰出青年科学基金项目(C2019204365);国家现代农业产业技术体系建设专项(CARS-15-03);河北省青年拔尖人才支持计划资助

Function study of cotton GbSTK gene in regulating flowering and Verticillium wilt resistance

CUI Jing(), WANG Zhi-Cheng, ZHANG Xin-Yu, KE Hui-Feng, WU Li-Qiang, WANG Xing-Fen, ZHANG Gui-Yin, MA Zhi-Ying, ZHANG Yan*()   

  1. State Key Laboratory of North China Crop Improvement and Regulation / Co-Innovation Center for Cotton Industry of Hebei Province / Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2020-04-11 Accepted:2020-08-19 Published:2021-01-12 Published online:2020-09-21
  • Contact: ZHANG Yan
  • Supported by:
    Natural Science Foundation of Hebei Province(C2019204365);China Agriculture Research System(CARS-15-03);Talents Support Program of Hebei Province

摘要:

棉花是重要的经济作物, 实现既抗病又早熟是棉花重要的育种目标, 但棉花抗病与早熟基因之间的关联性研究报道甚少。本课题组前期鉴定到一个响应黄萎病菌诱导的丝氨酸/苏氨酸蛋白激酶基因GbSTK, 可以提高转基因拟南芥的黄萎病抗性。本研究发现多个抗病棉花品种中STK基因的表达量显著高于感病对照品种H208。在抗病品种农大601中沉默STK基因, 沉默植株在接菌后20 d, 其黄萎病抗性显著降低, 病情指数由27.5 (耐病)升高到63.2 (感病), 表明该基因正向调控棉花黄萎病抗性。对转GbSTK基因拟南芥表型鉴定发现, 其开花时莲座叶片数平均为7.5个, 显著低于空载体对照植株(11.9个), 转基因植株开花时间较对照平均提早5~7 d。进一步对拟南芥开花途径标志基因FTSOC1LFY的转录水平检测发现, 转基因不同株系中FTSOC1的表达水平显著高于对照植株, 而LFY基因的表达受影响较小, 表明STK基因可以影响开花关键基因FTSOC1的表达, 进而调控植株提早开花。基于酵母双杂交互作蛋白筛选试验, 初步获得30个与GbSTK具有互作关系的候选蛋白, 为进一步揭示GbSTK的分子调控网络奠定了基础。本研究首次鉴定出可同时提高黄萎病抗性和提早开花的一个功能基因, 为棉花抗病早熟遗传改良提供了参考依据。

关键词: 棉花, 丝氨酸/苏氨酸蛋白激酶(GbSTK), 黄萎病抗性, 早熟性

Abstract:

Cotton is an important cash crop, and achieving disease resistance as well as early maturity is an important breeding goal. However, the molecular relationship between disease resistance and early maturity of cotton is still a research gap. In previous study, we identified a GbSTK gene response to V. dahliae that could enhance Verticillium wilt resistance in transgenic Arabidopsis. In this study, we found that GbSTK was more highly expressed in resistance and/or tolerant varieties than in susceptible varieties. Knocking down of GbSTK expression in Nongda 601 showed that the silenced plants displayed serious disease symptoms, with disease index from 27.5 (tolerant) to 63.2 (susceptible), suggesting that GbSTK positively regulates cotton Verticillium wilt resistance. More interesting, we found that GbSTK could promote the development of Arabidopsis. At the flowering time point, the average number of rosette leaves in transgenic lines was 7.5, significantly less than the mock plants, and the transgenic plants bloomed five to seven days earlier than the control. The FT and SOC1 gene, regarded as marker genes in Arabidopsis flowering signaling pathway, maintained higher expression level in transgenic lines than in the mock, indicating that GbSTK could accelerate flowering via regulating FT and SOC1 gene expression. We also obtained 30 candidate proteins that could interacted with GbSTK via yeast double hybrid test, which helped to further revealing the molecular regulatory network of GbSTK. Taken together, we first identified a functional gene that could improve disease resistance and early flowering, which would provide a reference for genetic improvement of cotton disease resistant and early maturity.

Key words: cotton, GbSTK, Verticillium wilt resistance, early maturity

附图1

苗期蘸根法接种黄萎病菌孢子悬浮液 a: 棉苗水培培养。b: 蘸根法接黄萎病菌。"

表1

试验中所用引物"

引物名称
Primer name
序列
Primer sequence (5°-3°)
用途
Purpose
STK-F1 CCATATGAAGAATTCAAGCAAATCCTC 基因扩增Gene amplification
STK-R1 GCTGCAGTCAAGGGGCCGTAGGTTGT 基因扩增Gene amplification
VF ACTAGTGCTGCTCGAACTTCTATTGGGAAG 基因扩增Gene amplification
VR GGCGCGCCAGGGGCCGTAGGTTGTGTAACTCT 基因扩增Gene amplification
STK-F2
STK-R2
ATGCGGCAACGAACAAGAAT
TAGATTGGCACTGAGCTGGT
实时定量qPCR
实时定量qPCR
GhUBQ14-F CAACGCTCCATCTTGTCCTT 实时定量qPCR
GhUBQ14-R TGATCGTCTTTCCCGTAAGC 实时定量qPCR
BD-F TTTGTAATACGACTCACTATAGGGCG 通用载体Vector
BD-R TTTTCGTTTTAAAACCTAAGAGTCAC 通用载体Vector
T7 TAATACGACTCACTATAGGGCG 通用载体Vector
3°AD AGATGGTGCACGATGCACAG 通用载体Vector
TUB2-F ATCCGTGAAGAGTACCCAGAT 实时定量qPCR
TUB2-R AAGAACCATGCACTCATCAGC 实时定量qPCR
FT-F CTTGGCAGGCAAACAGTGTATGCAC 实时定量qPCR
FT-R GCCACTCTCCCTCTGACAATTGTAGA 实时定量qPCR
SOC1-F AGCTGCAGAAAACGAGAAGCTCTCTG 实时定量qPCR
SOC1-R GGGCTACTCTCTTCATCACCTCTTCC 实时定量qPCR

图1

棉花不同抗病品种中STK基因的表达"

图2

在农大601中沉默STK基因对棉花黄萎病抗性的影响 a: 沉默棉花GhCLA1基因; b: TRV::GbSTK植株中STK基因的沉默效率检测; c: 接菌后25 d对照植株与沉默植株的黄萎病抗性表现; d和e: 接菌后25 d对照植株与沉默植株的发病级别调查和病情指数。"

图3

过表达GbSTK拟南芥表型鉴定及开花标志基因的表达分析 a~c: 过表达GbSTK基因促进拟南芥提早开花; d: 开花时转基因植株与对照植株莲座叶片数比较; e~g: 转基因植株与对照植株中SOC1、FT和LFY基因的表达。误差线表示标准差, *, ***分别表示在0.05和0.001水平显著差异。WT: 野生型拟南芥; OE: 转GbSTK基因拟南芥; OE1和OE2: 转GbSTK基因拟南芥株系。"

图4

诱饵载体pGBKT7-GbSTK的构建与毒性检测 M: DNA marker DL5000; 1~2: GbSTK-T双酶切; 3~6: pGBKT7双酶切; 7: pGBKT7-GbSTK阳性克隆。d: 诱饵载体pGBKT7- GbSTK毒性检测。"

图5

诱饵载体pGBKT7-GbSTK自激活检测 a: SD/-Leu/-Trp培养基酵母生长情况; b: SD/-Ade/-His/-Leu/-Trp/X-α-Gal培养基酵母生长情况; c: 诱饵载体pGBKT7-GbSTK在培养基中生长情况。"

图6

筛选阳性克隆"

表2

与GbSTK互作的候选蛋白"

编号
No.
蛋白描述
Protein description
功能报道
Function reported
功能分类
Functional classification
1 Cytochrome c oxidase subunit 6b-1 Regulate ROS production[22] ROS production
2 Malate dehydrogenase Related to production of ROS and PCD[23]
3 GTPase-activating protein GYP7 Defense response[24] Involved in defense and abiotic/biotic stresses
4 Cytochrome P450 71D8 Defense response[25]
5 Short-chain dehydrogenase reductase 3b Involved in plant defense responses[26]
6 Cysteine proteinase RD21a Involved in plant defense[27]
7 Vacuolar protein sorting-associated protein 55 Involved in plant defense[28]
8 Pathogenesis-related protein STH-2 Defense response[29]
9 (-)-alpha-terpineol synthase Involved in defense and abiotic stresses[30]
10 Glyceraldehyde-3-phosphate dehydrogenase 2 Negatively regulate autophagy and immunity[31]
11 Phosphoglycerate Ubiquitin-conjugating
enzyme E2
Involved in plant immunity[32]
12 Dirigent protein 16 Responsive to biotic stress[33]
13 Major allergen Pruar 1 Novel Pathogenesis-related protein[34]
14 S-Adenosylmethionine synthase Responsive to abiotic stress[35]
15 S-adenosylmethionine synthase 2 Responsive to abiotic stress[36]
16 Probable inorganic phosphate transporter 1-5 Involved in phosphate homeostasis[37]
17 Glycerophosphodiester phosphodiesterase GDPD1 Response to Pi deficiency[38]
18 Delta-cadinene synthase isozyme C2 Gossypol biosynthetic[39] Secondary metabolism and
synthesis
19 UDP-galactose/UDP-glucose transporter 3 Synthesis of cell walls[40]
20 Aldehyde dehydrogenase family 2 member C4 Regulator of the growth-defense trade-off[41] Plant development and
stress response
21 Probable 2-oxoglutarate-dependent dioxygenase Related to vascular disease/involved in
gibberellin synthesis[42]
22 Patellin-5 Function in plant development and stress
response[43]
23 Triphosphate tunel metalloenzyme 3 Catalyze diverse enzymatic reactions[44]
24 Chloroplastic 2,3-bisphosphoglycerate-independent mutase Involved in photosynthesis and chloroplast development[45] Plant growth and development
25 Synaptotagmin-2 Participates in pollen germination and tube growth[46]
26 Mediator of RNA polymerase II transcription subunit
27 Alpha-taxilin
28 Aconitate hydratase, cytoplasmic
29 Putative zinc transporter At3g08650
30 40S ribosomal protein S5

附图2

SAMS蛋白和陆地棉GhSAMS蛋白同源性分析"

[1] Alderwick J, Molle V, Kremer L, Cozzone A J, Dafforn T R, Besra G S, Fütterer K. Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 2006,103:2558-2563.
doi: 10.1073/pnas.0507766103 pmid: 16477027
[2] 蒋正宁, 别同德, 赵仁惠, 高德荣, 吴旭江, 张伯桥. 受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达. 江苏农业学报, 2016,32:980-986.
Jiang Z N, Bie T D, Zhao R H, Gao D R, Wu X J, Zhang B Q. Cloning and expression analysis of a serine/threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection. Jiangsu J Agric Sci, 2016,32:980-986 (in Chinese with English abstract).
[3] Sharma A, Komatsu S. Involvement of a Ca2+-dependent protein kinase component downstream to the gibberellin-binding phosphoprotein, RuBisCO activase, in rice. Biochem Biophys Res Commun, 2002,290:690-695.
doi: 10.1006/bbrc.2001.6269 pmid: 11785954
[4] Arcas A, Cases I, Rojas A M. Serine/threonine kinases and E2-ubiquitin conjugating enzymes in Planctomycetes: unexpected findings. Antonie Van Leeuwenhoek, 2013,104:509-520.
doi: 10.1007/s10482-013-9993-2 pmid: 23918348
[5] Kim Y J, Lin N C, Martin G B. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell, 2002,109:589-598.
doi: 10.1016/s0092-8674(02)00743-2 pmid: 12062102
[6] Martin G B, Brommonschenkel S H, Chunwongse J, Frary A, Ganal M W, Spivey R, Wu T, Earle E D, Tanksley S D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993,262:1432-1436.
pmid: 7902614
[7] Pan J, Li Z, Wang Q, Yang L, Yao F, Liu W. An S-domain receptor-like kinase, OsESG1, regulates early crown root development and drought resistance in rice. Plant Sci, 2020,290:110318.
doi: 10.1016/j.plantsci.2019.110318 pmid: 31779898
[8] Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995,270:1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370
[9] 杜中军, 王家保, 黄俊生, 翟衡, 徐兵强. 番木瓜丝氨酸/苏氨酸蛋白激酶类抗病基因同源序列的克隆与特征分析. 果树学报, 2006,23:46-50.
Du Z J, Wang J B, Huang J S, Zhai H, Xu B Q. Isolation and characterization of serine/threonine protein kinase-like disease resistance gene analogy from papaya (Carica papaya). J Fruit Sci, 2006,23:46-50 (in Chinese with English abstract).
[10] Paik I, Chen F, Ngoc P V, Zhu L, Kim J I, Huq E. A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. Nat Commun, 2019,10:4216.
pmid: 31527679
[11] Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011,108:7727-7732.
pmid: 21508323
[12] 牛吉山, 于玲, 马正强, 刘大钧. 一个小麦丝氨酸-苏氨酸蛋白激酶基因的克隆和分析. 植物学报, 2002,44:325-328.
Niu J S, Yu L, Ma Z Q, Liu D Y. Molecular cloning and characterization of a serine/threonine protein kinase gene from Triticum aestivum. Acta Bot Sin, 2002,44:325-328 (in Chinese with English abstract).
[13] Ito Y, Banno H, Moribe T, Hinata K, Machida Y. NPK15, a tobacco protein-serine/threonine kinase with a single hydrophobic region near the amino-terminus. Mol Gen Genet, 1994,245:1-10.
doi: 10.1007/BF00279745 pmid: 7845351
[14] 杨嫦丽, 王有国, 王祥宁, 张艺萍, 崔光芬, 段青, 贾文杰, 杜文文, 马璐琳. 镰刀菌诱导的泸定百合SSH文库构建及抗病相关基因筛选. 西北植物学报, 2014,34:2170-2175.
Yang C L, Wang Y G, Wang X N, Zhang Y P, Cui G F, Duan Q, Jia W J, Du W W, Ma L L. Construction of Lilium sargentiae SSH library induced by Fusarium oxysporum and screening of the resistance related genes. Acta Bot Boreal Occident Sin, 2014,34:2170-2175 (in Chinese with English abstract).
[15] Zhang Y, Wang X, Li Y, Wu L, Zhou H, Zhang G, Ma Z. Ectopic expression of a novel Ser/Thr protein kinase from cotton (Gossypium barbadense), enhances resistance to Verticillium dahliae infection and oxidative stress in Arabidopsis. Plant Cell Rep, 2013,32:1703-1713.
pmid: 23912851
[16] 王国宁, 赵贵元, 岳晓伟, 李志坤, 张艳, 张桂寅, 吴立强, 王省芬, 马峙英. 河北省棉花黄萎病菌致病性与ISSR遗传分化. 棉花学报, 2012,24:348-357.
Wang G N, Zhao G Y, Yue X W, Li Z K, Zhang Y, Zhang G Y, Wu L Z, Wang S F, Ma Z Y. Pathogenicity and ISSR genetic differentiation of Verticillium dahliae isolates from cotton growing areas of Hebei province. Cotton Sci, 2012,24:348-357 (in Chinese with English abstract).
[17] Zhang Y, Wang X F, Rong W, Yang J, Ma Z Y. Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation. Front Plant Sci, 2016,7:1830.
doi: 10.3389/fpls.2016.01830 pmid: 28018374
[18] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[19] Zhang Y, Wu L, Wang X, Chen B, Zhao J, Cui J, Li Z, Yang J, Wu L, Wu J, Zhang G, Ma Z. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. Mol Plant Pathol, 2019,20:309-322.
doi: 10.1111/mpp.12755 pmid: 30267563
[20] Zhang Y, Wang X, Yang S, Chi J, Zhang G, Ma Z. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Rep, 2011,30:2085-2096.
pmid: 21739145
[21] 王雪娟, 杨君, 张艳, 阎媛媛, 马峙英, 王省芬. 应用酵母双杂交系统筛选GbVWR互作蛋白. 河北农业大学学报, 2018,41(5):1-6.
Wang X J, Yang J, Zhang Y, Yan Y Y, Ma Z Y, Wang S F. Screening for the interaction proteins with GbVWR by Yeast Two-Hybrid System. J Hebei Agric Univ, 2018,41(5):1-6 (in Chinese with English abstract).
[22] Ramzan R, Vogt S, Kadenbach B. Stress-mediated generation of deleterious ROS in healthy individuals-role of cytochrome c oxidase. J Mol Med (Berl), 2020,98:651-657.
doi: 10.1007/s00109-020-01905-y pmid: 32313986
[23] Zhao Y, Luo L, Xu J, Xin P, Guo H, Wu J, Bai L, Wang G, Chu J, Zuo J, Yu H, Huang X, Li J. Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res, 2018,28:448-461.
doi: 10.1038/s41422-018-0024-8 pmid: 29540758
[24] Cheung M Y, Zeng N Y, Tong S W, Li W Y, Xue Y, Zhao K J, Wang C, Zhang Q, Fu Y, Sun Z, Sun S S, Lam H M. Constitutive expression of a rice GTPase-activating protein induces defense responses. New Phytol, 2008,179:530-545.
pmid: 19086295
[25] Rustgi S, Springer A, Kang C, von Wettstein D, Reinbothe C, Reinbothe S, Pollmann S. ALLENE OXIDE SYNTHASE and HYDROPEROXIDE LYASE, two non-canonical cytochrome P450s in Arabidopsis thaliana and their different roles in plant defense. Int J Mol Sci, 2019,20:3064.
[26] Hwang S G, Lin N C, Hsiao Y Y, Kuo C H, Chang P F, Deng W L, Chiang M H, Shen H L, Chen C Y, Cheng W H. The Arabidopsis short-chain dehydrogenase/reductase 3, an abscisic acid deficient 2 homolog, is involved in plant defense responses but not in ABA biosynthesis. Plant Physiol Biochem, 2012,51:63-73.
doi: 10.1016/j.plaphy.2011.10.013 pmid: 22153241
[27] Niño M C, Kang K K, Cho Y G. Genome-wide transcriptional response of papain-like cysteine protease-mediated resistance against Xanthomonas oryzae pv. oryzae in rice. Plant Cell Rep, 2020,39:457-472.
doi: 10.1007/s00299-019-02502-1 pmid: 31993730
[28] Kim H K, Kim K W, Yun S H. Multiple roles of a putative vacuolar protein sorting associated protein 74, FgVPS74, in the cereal pathogen Fusarium graminearum. J Microbiol, 2015,53:243-249.
doi: 10.1007/s12275-015-5067-7 pmid: 25845538
[29] Park S, Gupta R, Krishna R, Kim S T, Lee D Y, Hwang D J, Bae S C, Ahn I P. Proteome analysis of disease resistance against Ralstonia solanacearum in potato cultivar CT206-10. Plant Pathol J, 2016,32:25-32.
pmid: 26889112
[30] Zhang X, Niu M, Teixeira da Silva J A, Zhang Y, Yuan Y, Jia Y, Xiao Y, Li Y, Fang L, Zeng S, Ma G. Identification and functional characterization of three new terpene synthase genes involved in chemical defense and abiotic stresses in Santalum album. BMC Plant Biol, 2019,19:115.
doi: 10.1186/s12870-019-1720-3 pmid: 30922222
[31] Han S, Wang Y, Zheng X, Jia Q, Zhao J, Bai F, Hong Y, Liu Y. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. Plant Cell, 2015,27:1316-1331.
doi: 10.1105/tpc.114.134692 pmid: 25829441
[32] Zhou G A, Chang R Z, Qiu L J. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol, 2010,72:357-367.
pmid: 19941154
[33] Thamil A S K, Park J I, Ahmed N U, Jung H J, Hur Y, Kang K K, Lim Y P, Nou I S. Characterization and expression analysis of dirigent family genes related to stresses in Brassica. Plant Physiol Biochem, 2013,67:144-153.
pmid: 23562798
[34] Toda M, Reese G, Gadermaier G, Schulten V, Lauer I, Egger M, Briza P, Randow S, Wolfheimer S, Kigongo V, Del Mar San Miguel Moncin M, Fötisch K, Bohle B, Vieths S, Scheurer S. Protein unfolding strongly modulates the allergenicity and immunogenicity of Pru p 3, the major peach allergen. J Allergy Clin Immunol, 2011,128:1022-1030.
doi: 10.1016/j.jaci.2011.04.020 pmid: 21571358
[35] Mo H J, Sun Y X, Zhu X L, Wang X F, Zhang Y, Yang J, Yan G J, Ma Z Y. Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. Planta, 2016,243:1023-1039.
doi: 10.1007/s00425-015-2463-5 pmid: 26757733
[36] Kim S H, Kim S H, Palaniyandi S A, Yang S H, Suh J W. Expression of potato S-adenosyl-L-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Plant Physiol Biochem, 2015,87:84-91.
pmid: 25559387
[37] Liu J, Yang L, Luan M, Wang Y, Zhang C, Zhang B, Shi J, Zhao F G, Lan W, Luan S. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc Natl Acad Sci USA, 2015,112:6571-6578.
[38] Mehra P, Pandey B K, Verma L, Giri J. A novel glycerophosphodiester phosphodiesterase improves phosphate deficiency tolerance in rice. Plant Cell Environ, 2019,42:1167-1179.
pmid: 30307043
[39] Tan X P, Liang W Q, Liu C J, Luo P, Heinstein P, Chen X Y. Expression pattern of (+)-δ-delta-cadinene synthase genes and biosynthesis of sesquiterpene aldehydes in plants of Gossypium arboreum L. Planta, 2000,210:644-651.
doi: 10.1007/s004250050055 pmid: 10787059
[40] Song X, Zhang B, Zhou Y. Golgi-localized UDP-glucose transporter is required for cell wall integrity in rice. Plant Signal Behav, 2011,6:1097-1100.
doi: 10.4161/psb.6.8.16379 pmid: 21822061
[41] Sunkar R, Bartels D, Kirch H H. Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J, 2003,35:452-464.
pmid: 12904208
[42] Green H L H, Brewer A C. Dysregulation of 2-oxoglutarate- dependent dioxygenases by hyperglycaemia: does this link diabetes and vascular disease? Clin Epigenetics, 2020,12:59.
pmid: 32345373
[43] Zhou H, Duan H, Liu Y, Sun X, Zhao J, Lin H. Patellin protein family functions in plant development and stress response. J Plant Physiol, 2019,235:94-97.
[44] Martinez J, Truffault V, Hothorn M. Structural determinants for substrate binding and catalysis in triphosphate tunnel metalloenzymes. J Biol Chem, 2015,290:23348-23360.
pmid: 26221030
[45] Lin D, Zhang L, Mei J, Chen J, Piao Z, Lee G, Dong Y. Mutation of the rice TCM12 gene encoding 2,3-bisphosphoglycerate- independent phosphoglycerate mutase affects chlorophyll synthesis, photosynthesis and chloroplast development at seedling stage at low temperatures. Plant Biol(Stuttg), 2019,21:585-594.
pmid: 30803106
[46] Wang H, Han S, Siao W, Song C, Xiang Y, Wu X, Cheng P, Li H, Jásik J, Mičieta K, Turňa J, Voigt B, Baluška F, Liu J, Wang Y, Zhao H. Arabidopsis synaptotagmin 2 participates in pollen germination and tube growth and is delivered to plasma membrane via conventional secretion. Mol Plant, 2015,8:1737-1750.
doi: 10.1016/j.molp.2015.09.003 pmid: 26384245
[47] Ye J, Zhong T, Zhang D, Ma C, Wang L, Yao L, Zhang Q, Zhu M, Xu M. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant, 2019,12:360-373.
doi: 10.1016/j.molp.2018.10.005 pmid: 30853061
[48] Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin J J, Zhu X B, Li Y, Li W T, Liu J L, Wang J C, Chen X Q, Qing H, Wang Y P, Liu G F, Wang W M, Li P, Wu X J, Zhu L H, Zhou J M, Pamela C R, Li S G, Li J Y, Chen X W. A single transcription factor promotes both yield and immunity in rice. Science, 2018,361:1026-1028.
doi: 10.1126/science.aat7675 pmid: 30190406
[49] He M W, Wang Y, Wu J Q, Shu S, Sun J, Guo S R. Isolation and characterization of S-adenosylmethionine synthase gene from cucumber and responsive to abiotic stress. Plant Physiol Biochem, 2019,141:431-445.
doi: 10.1016/j.plaphy.2019.06.006 pmid: 31238253
[50] Roeder S, Dreschler K, Wirtz M, Cristescu S M, van Harren F J, Hell R, Piechulla B. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. Plant Mol Biol, 2009,70:535-546.
doi: 10.1007/s11103-009-9490-1 pmid: 19396585
[51] Burstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M. The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J, 2007,49:238-249.
doi: 10.1111/j.1365-313X.2006.02942.x pmid: 17144895
[52] Mao D, Yu F, Li J, Van de Poel B, Tan D, Li J, Liu Y, Li X, Dong M, Chen L, Li D, Luan S. FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ, 2015,38:2566-2574.
pmid: 25988356
[53] Oh M, Komatsu S. Characterization of proteins in soybean roots under flooding and drought stresses. J Proteomics, 2015,114:161-181.
pmid: 25464361
[54] 张悦, 赵鑫, 侯峥, 王艳敏, 王玉成, 王超. 刚毛柽柳S-腺苷甲硫氨酸合成酶(ThSAMS)基因的克隆及表达分析. 植物研究, 2019,39:113-122.
Zhang Y, Zhao X, Hou Z, Wang Y M, Wang Y C, Wang C. Cloning and expression analysis of S-adenosyl-L-methionine synthetase (ThSAMS) gene from Tamarix hispida. Bull Bot Res, 2019,39:113-122 (in Chinese with English abstract).
[55] 董先娟, 冯莹莹, 刘晓, 齐博文, 闫雅如, 丁宁, 吴云, 高博闻, 王晓晖. 白木香S-腺苷甲硫氨酸合成酶基因的克隆与表达分析. 药学学报, 2018,53:1743-1752.
Dong X J, Feng Y Y, Liu X, Qi B W, Yan Y R, Ding N, Wu Y, Gao B W, Wang X H. Cloning and expression analysis of S-adenosylmethionine synthetase gene from Aquilaria sinensis. Acta Pharm Sin, 2018,53:1743-1752 (in Chinese with English abstract).
[56] Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005,309:1052-1056.
pmid: 16099979
[57] 刘选明, 刘泽田, 汪龙, 赵小英, 于峰. 拟南芥开花基因FT对根毛生长的影响研究. 湖南大学学报(自然科学版), 2019,46(6):76-82.
Liu X M, Liu Z T, Wang L, Zhao X Y, Yu F. Study on effect of FT gene on root hair development in Arabidopsis. J Hunan Univ (Nat Sci), 2019,46(6):76-82 (in Chinese with English abstract).
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!